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PREFACE 

COMPUSEC's principle objective during the SBIR Phase I effort was to 
demonstrate the viability of automated security verification at the 
implementation level. This Final Technical Report is a compilation of 
the results of the Phase I investigation. Section 1 introduces relevant 
source code verification criteria. Section 2 presents the Phase I 
investigation approach. Section 3 describes criteria for evaluating the 
verifiability of different high level source languages. Section 4 
compares the Source-to-SPECIAL (STOS) and Source-to-Formulas (STOF) 
translation approaches. Section 5 contrasts three different theorem 
provers. Section 6 contains specifications for an STOS and an STOF 
Verification Tool. Finally, conclusions and recommendations are 
presented in Section 7. Two appendices are included with this Final 
Report: Appendix A contains evaluations for all considered candidate 
languages; Appendix B takes a short Ada source program through the STOF 
translation approach. 
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SECTION 1 

INTRODUCTION 

1.1  SOFTWARE THREATS 

During software development, subversive software may be inserted that 
threatens the fielded system's mission. This type of software attack 
includes: Trojan horse, virus, worm, covert channel (including timing 
and storage channels), time bombs, trap doors, and backdoors. These 
attacks fall into one of the following threat scenarios: 

• System compromise:  Covert channels (timing or storage) 

• Corruption of system information:  Trojan horse, virus, worm 

• Delay or denial of system services:  Time bomb, virus 

• Misappropriation of system resources:  trapdoors, backdoors 

1.2 SOFTWARE COUNTERMEASURES 

Currently, the development of secure applications requires that special 
countermeasures be used to protect against subversion in the software 
development environment. Typical countermeasures combine the of use of 
cleared software developers, blind purchase of commercial off-the-shelf 
software, and two-person control. These countermeasures address certain 
threat scenarios, but do not entirely preclude or prevent the existence 
of threat mechanisms within the software itself. 

Assurance that subversive software cannot succeed in the software 
development environment can only be achieved by applying comprehensive 
security awareness and analysis throughout a project's life cycle. 
Verified development environments can be expected to become a requirement 
for future government software development projects. Methods of 
analyzing security-relevant aspects of software design must become 
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embedded in the software engineering methodology. Software developers 
and their managers require early feedback about security design flaws in 
order to affect design improvements in a timely, cost-effective manner. 

1.3 FORMAL VERIFICATION OF SOFTWARE 

When software threat mechanisms are characterized according to rules 
specified by a security policy, formal verification can be applied to 
assure that software does not violate those rules. Automated formal 
verification is a rigorous process that provides feedback in the form of 
failed proofs that point to questionable software modules. Formal 
verification has been used for two major categories of security-relevant 
proofs: 

• Information Flow. Proofs regarding information flow can 
ascertain whether a program causes an insecure data flow to 
occur.  [1] 

• Proof-of-Correctness. Proofs regarding program correctness 
ascertain whether the preconditions of some processing (X) plus 
the processing of (X) imply the postconditions of (X).  [2] 

Several factors affect the degree of assurance that can be obtained by 
using formal verification techniques: 

• Security Policy. To what extent is the security policy able to 
capture all security relevant rules? 

• Security Model. To what extent is the security model able to 
capture the essence of security policy statements in mathematical 
formalisms? 

• Language Choice. To what extent can the specification or 
implementation language express software functionality in a 
manner suitable for static analysis? 

• Theorem Prover Choice. What is the relative strength of the 
theorem prover to be used? What performance and time costs are 
associated with its use? 

• Verification Methodology Choice. Is the verification methodology 
endorsed by the National Computer Security Center (NCSC)? Or, 
does the methodology represent innovative technology improvement 
suitable for endorsement for use on military projects? 
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1.3.1 Security Policy And Verification 

Several military standards specify software security requirements: 

• DoD Directive 5200.28 - Security Requirements for ADP Systems 

• DoD Directive 5200.28M - ADP Security Manual 

• AFSCP 207-1 - System Security Engineering Management 

• AFR 205-16 - Automated Data Processing (ADP)  Security Policy 
Procedures and Responsibilities 

• AR 380-380 - Automated System Security 

• OPNAVINST 5239.1A - ADP Security Program 

These documents represent several different styles of characterizing 
threats and/or the mechanisms required to address those threats. 

Another document, DoD 5200.28-STD, "Trusted Computer System Evaluation 
Criteria," classifies systems into four broad hierarchical divisions of 
enhanced security protection. These criteria form a basis for the 
evaluation of the effectiveness of security controls built into software. 

1.3.2 Security Models And Verification 

Formal verification analysis is performed with respect to a mathematical 
security model. This model represents the security policy to be enforced 
on the system being verified. The totality of protection mechanisms 
within the system is called its trusted computing base (TCB). The TCB 
can be mapped to mathematical axioms that formalize security policy 
rules. 

Security policy statements can be precise and system-specific, or can be 
sufficiently broad to relate to whole classes of secure systems. The 
security policy standards referenced in the previous section relate to 
all military applications and describe security policy requirements that 
must be formally expressed in a mathematical security model in order to 
be suitable for formal verification. 

1-3 



1.3.3 Language Choice And Verification 

Languages differ greatly with respect to ease of translation to 
intermediate specification languages or formulas. They also differ 
significantly in their suitability for static security analysis. In 
general, languages that are unambiguous and restrict information flow are 
more favorable for translation and for verification. This subject is 
discussed in further detail in Section 3. Appendix A provides the 
results of the language evaluation conducted for this Phase I effort. 

1.4 THEOREM PROVERS 

Theorem provers can be evaluated for their proving capabilities, 
performance, user interaction, and report generation. An ideal theorem 
prover is one that (1) has extended proving capabilities (i.e. handles 
induction, propositional logic, and user-defined recursive functions), 
(2) has a relatively fast performance r^ite, (3) is user-friendly, and (4) 
produces clear, well-organized reports. In large systems requiring 
formal verification, these characteristics are vital to ensure complete, 
correct, and understandable results. 

Formula notation required as input for each theorem prover also differs. 
For example, the input for Boyer-Moore theorem prover is lambda calculus 
[3] in prefix format, while other systems use standard predicate calculus 
in infix format. [A],[5] However, the specific input format chosen makes 
little difference to the implementation of the theorem prover. Section 5 
contains further information on existing theorem provers. 

1.5 VERIFICATION METHODOLOGIES 

Three methodologies have been supported by the NCSC for use on military 
contracts: 

• Formal Development Methodology (FDM) 
• GYPSY 
• Hierarchical Development Methodology (HDM). 

1-4 



1.5.1  FDM 

FDM consists of a set of tools and languages, as follows: 

• The Ina Jo language for writing specification and requirements 

• The InaMod language, an extension of the Ina Jo language, for 
writing assertions about programs 

• The Ina Jo processor, for examining specifications and generating 
logical assertions 

• The Interactive Theorem Prover (ITP), for assisting users in 
proving the logical assertions generated by the Ina Jo processor. 

• An ITP post-processor, for generating transcript files of 
completed proofs. The post-processor eliminates all steps not 
actually used in a proof, converts the contents of the file from 
the ITP internal representation, and reformats the text. 

FDM provides the ability to map various levels of requirements and design 
refinement within a system to the next higher level. Its purpose is to 
prove adherence of a system specification to a set of logical relations, 
along with proving consistency between different levels of specification. 
FDM has been used on several significant multi-level secure systems. FDM 
has been applied to AUTODIN II, the Secure Transacting Processing 
Experiment (STPE), a Job Stream Separator (JSS), a kernelized IBM VM 
(KVM), a Computer Operating System/Network Front-End (COS/NFE), and the 
Secure Release Terminal.  [6,IV] 

1.5.2 GYPSY 

GYPSY is an integrated system of methods, languages, and tools for 
building formally verified software systems. The GYPSY methodology 
provides capability for both system specification and implementation 
within the verification environment. Its purpose is to support proofs 
about the correctness of system specifications and programs. In 
addition, An information flow tool is under development. The GYPSY 
verification environment includes a GYPSY database manager, a parser, an 
edit interface, a verification condition generator, the Bledsoe theorem 
prover, a program optimizer, a Bliss translator, and an Ada translator 
that operate on specifications developed in GYPSY. 

GYPSY has been used to verify several experimental applications, 
including message switching systems, selected components of an air 
traffic control system, communications protocols, the trusted 
applications for SCOMP [7], and the monitoring of inter-process 
communication.  [6,11] 
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1.5.3  BDM 

HDM was developed as an aid to design, implementation, and verification 
of secure software systems. Two dialects of HDM exist and are commonly 
called "old HDM" and "Enhanced HDM" (E-HDM). COMPUSEC has used old HDM 
successfully on the Army's Regency Net project and the Navy's AN/GSC-40, 
ANGSC-40A, and ANGSC-40B Command Post Terminals. HDM is a highly 
effective method for analyzing systems with respect to information flow. 
The toolset includes the language SPECIAL, the MLS formula generator for 
multilevel security analysis, and the Boyer-Moore theorem prover. 

Although HDM has been used to formally verify a number of existing secure 
systems such as SCIACT and SCOMP [7], questions have surfaced concerning 
its continued endorsement for use on new systems. In September 1986, the 
HDM toolset was removed from the NCSC's Endorsed Tools List 
(ETL). [8] This action occurred for two reasons: first, funds are 
limited for supporting verification toolsets; second, an enhancement to 
the toolset is currently being developed by SRI International. E-HDM 
uses the Shostak rather than Boyer-Moore theorem prover and will operate 
on a substantially different version of SPECIAL. Revised SPECIAL is 
purported to be able to progressively specify program design to finally 
arrive at a specification that is a small unimplemented subset of Pascal. 
HDM is being used to reason about the specifications of SIFT, an 
experimental operating system for a fault-tolerant computer. To date, 
NCSC has not decided whether to support either or both HDM and E-HDM on 
the ETL.  [6,V] 

1.5.4 Methodology Advantages And Disadvantages 

Use of any of these verification methodologies for security theorem 
proving has advantages and disadvantages. One advantage is that these 
methodologies already exist and are accredited by the NCSC for use on 
military projects. However, each toolset contains some intrinsic 
limitations in functionality or completeness that must be supplemented 
with additional verification techniques. 

FDM has been criticized for a lack of both formal description of the 
language and lack of formal logic for reasoning about Ina Jo 
specifications. The Ina Jo Theorem Prover has been described as 
restrictive. [6,IV] 

Although GYPSY supports BLISS or Ada as an implementation language, 
implementable code can only be reached after exhaustive specification 
using the GYPSY language. For any project using more conventional 
program design languages, the intermediate step of translating this into 
GYPSY input language would be necessary before verification efforts could 
continue. Also, although GYPSY has been used on several experimental 
projects, it has not yet developed a significant track record on fielded 
systems. 16,11] 
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COMPUSEC has developed several support tools for use with HDM. These 
include a Bubble-to-SPECIAL (BTOS) tool for translating Data Flow 
diagrams into HDM's SPECIAL [9] and an Ada-to-SPECIAL (ATOS) translator 
that translates Ada program design language (PDL) into SPECIAL. These 
tools have been extremely useful. However, program designers have often 
expressed a preference for obtaining security feedback about code rather 
than just design.  This capability currently does not exist. 
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SECTION 2 

INVESTIGATION APPROACH 

This outline represents the approach that was followed during this Phase 
I effort to investigate secure source code verification. 

I. Perform Candidate Language Evaluations. A method was developed 
for rating a cross-section of 11 different languages on their 
suitability for static security analysis and ease of translation. 

II. Perform Translation Approach Evaluations. Two candidate 
translation approaches were evaluated by attempting translations 
of several generic language constructs in two different 
languages. 

• Evaluate Source-to-SPECIAL (STOS) Approach. STOS is an 
automated translation of source to SPECIAL that would 
function as a front-end for the HDM verification environment. 

• Evaluate Source-to-Formulas (STOF) Approach. STOS is an 
automated translation of source directly to formulas. This 
concept streamlines the verification process by eliminating 
the need for a specification language. 

III. Perform Theorem Prover Evaluations. The relative capabilities 
and ease of use of three different theorem provers was 
considered: 

• Boyer-Moore Theorem Prover 
• Shostak. Theorem Prover 
• COMPUSEC Theorem Prover 

IV. Develop Source Code Verification Tool Specifications. Functional 
specifications were developed for two tools that, if developed, 
could implement the two evaluated approaches. 
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• Source-to-SPECIAL (STOS) Verification Tool 
• Source-to-Formulas (STOF) Verification Tool 

V. Form Conclusions and Recommendations. Based on the accumulated 
data, the two source code verification approaches were compared 
and one was recommended as more favorable. 
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SECTION 3 

CANDIDATE LANGUAGE EVALUATIONS 

3.1  LANGUAGE CHARACTERISTICS 

Characteristics inherent to the syntax or semantics of a language can 
favorably or unfavorably impact the translation of the language for 
static verification analysis. This impact applies to analysis of both 
information flow and correctness. In general, languages that are 
unambiguous and that clearly show control of information flow represent 
better candidates for secure software verification. The following six 
categories of characteristics that impact static verification analysis 
have been identified. 

• Standardization 
• Code Structure 
• Ambiguity 
• Visibility 
• Data Representation 
• Interfaces 

3.1.1 Standardization 

Languages that have a well-defined standard are desirable for 
translation. Rigorous standards clearly specify syntax and semantics of 
a language no matter which implementation is chosen. Clear specification 
promotes automated translation of that language for static analysis. 
Examples of organizations that promote language standards include the DoD 
(MIL-STD), ANSI, and ISO. In addition, several less formal standards 
have developed where one author has become the defacto reference for 
implementations of a particular language. 
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3.1.2 Code Structure 

The following features affect code structure and are important to 
security verification analysis. 

• Process/task use (Modularity) 
• Flow control 
• Statement evaluation order 
• Recursion 
• Backtracking 

Modularity of process/task simplifies the problem of verification of 
large software systems by breaking these systems down into meaningfully 
separate logical (and possibly physical) components. In addition, 
modularity tends to reduce the amount of component visibility (e.g., 
variables, static structures, and types), which can effectively scope the 
verification effort into smaller, more manageable components. 

All languages have some mechanisms for flow control. Control structures 
may be difficult or easy to use. In addition, these structures may be 
difficult or easy to translate for verification purposes. Information 
flow resulting from conditional statements such as "if" and "case" must 
be captured and represented in the source code verification translation 
process. "Case" statements are useful because they group related control 
flow into a single construct. 

Statement evaluation order must be deterministic and unambiguous in order 
to be suitable for translation and static analysis. It is important that 
the order of evaluation of a single statement can be determined in any 
context in which it is used. 

Recursion is an unfavorable language characteristic during verification 
[10]. Information flow in recursive processes can be difficult to trace, 
which inhibits static analysis. On the other hand, loops are often used 
in languages that do not depend upon recursion. Information flow within 
loops is more easily traced. 

Backtracking is a feature of some languages that is useful for functional 
reasons, but increases the difficulty of performing static analysis on 
the resulting code. The repeated scans involved with backtracking, when 
used by a language compiler, may cause an infinite loop condition. This 
makes it difficult to perform a meaningful static security analysis. 
[11] 
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3.1.3 Ambiguity 

Scoping, type coercion, and parameter passing can be ambiguous language 
characteristics. Scoping mechanisms make it easier to resolve names used 
in the code. Type checking is desirable, but some type coercions can 
introduce ambiguity into the information flow. If type coercion 
capability exists in a language, the rules for its application must be 
unambiguous in ordar to support static analysis. It is preferable if 
type coercion is not allowed. 

Procedures and functions encapsulate operations into a single reusable 
block format. They provide a level of abstraction that potentially 
reduces the ambiguity of code. In addition, procedures and functions 
decrease the number of necessarily visible variables. Correct use of 
procedures and functions makes static verification analysis easier. 

Languages with scoping rules that restrict the visibility of entities, do 
not allow coercion, and have clearly defined mechanisms for parameter 
passing are desirable. Such rules limit information flow possibilities 
in any section of code. Because all information flow within a system 
must be checked during formal verification, these characteristics will 
significantly decrease the difficulty of the static source code 
verification analysis. 

3.1.4 Visibility 

The use of hierarchies, data hiding, and data flow constructs impacts the 
visibility of data within source code. Data typing constructs in a 
language can cluster individual entities into a single entity type. This 
level of abstraction facilitates grouping entities with similar uses or 
contexts. Grouping may then reflect hierarchies within entities. 
Grouping can also be used to "hide" data, effectively restricting its 
visibility. Data hiding can be extremely useful in reducing the number 
of possible information flows. Ultimately, security verification depends 
on identification of source and destination of all data flows. It is 
possible for certain language constructs to obscure this information 
flow. 

3.1.5 Data Representation 

Abstract data types and data separation play a role in data 
representation. Arrays, records, and pointers are all vital language 
features. Although these constructs can be avoided, they prove useful in 
most applications. Languages written without these features (such as 
assembly language) may provide the advantage of being compact and fast, 
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but they lose some measure of readability and reliability. Furthermore, 
the complexity of an application written in higher level code increases 
unnecessarily if these constructs are not used. Distinct separation of 
code and data is also desirable.  Self-modifying code is to be avoided. 

3.1.6 Interfaces 

An ideal language has easy access to extensive operating system (OS) 
services, explicit definition of all interfaces to all components, a rich 
I/O construct set with direction-specific information, and a 
comprehensive user environment. These attributes also support static 
security analysis. 

3.2 CANDIDATE LANGUAGE EVALUATION APPROACH 

Eleven candidate languages were evaluated. [12,13,14,15,16,17,18,19,20] 
The following candidate languages were chosen in order to form a 
representative cross-section of commonly available high-level languages. 

Ada 
BASIC 
C 
Forth 
FORTRAN 
Lisp 
Modula 
Pascal 
PLM 
PROLOG 
SN0B0L 

First, a list was compiled of language attributes impacting code 
verifiability. (See categories of characteristics described in Section 
3.1). These language characteristics and attributes determine if or how 
well code can be translated into either SPECIAL or formulas. Each 
language was analyzed for the presence of each attribute. If present, 
its style of use was then analyzed for its impact on static verification 
analysis. Analysis resulted in the assignment of a value between 0 and 3 
for each attribute, where 3 indicates the most suitable use of the 
characteristic for static verification analysis. This unweighted 
criteria rating scheme is provided in Appendix A.1. Results of using 
this rating scheme are provided in Appendix A.2. 
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Table 3-1.  Summary of Language Evaluation Results 

+=========• *======== - ==== = ==== ==== == = = ==== ==== = = = = ===== ==== ===== = = = 4 

+ = = = = = = = = = :=. »s»»»++»i4 ===+ = = = 4 ===+ = = = 4 = = = -f = = = 4 = = = 4 = = = 4 = = = 4 

| CRITERIA         11 A | M | P 1 P  1 c 1 L  1 P 1 P  1 P  1 s 1 B | 

1 D 1 o 1 A !•• 1 I R | o 0 | N A I 
1 A 1 D I s 1 M s 1 o 1 R | R | o 1 s 

u 1 c ! p L I T I T | B I 
L 1 A I o 1 R 1 H o 1 c 
A L G A I 

N 
L 

+••»••»**: inunu+tnaH =• = = -» = = = 4 = = = 4 = = = 4 = = =4 = «== + 

| TOTALS          ||270 242 222 214 198 193 165 163 154 | 151 139| 

| STANDARDIZATION   || 
(10)             |15 3 4 3 2 1 1 3 1 1 1 

| CODE STRUCTURE    1| 
(20)            ||57 51 41 48 43 30 49 33 48 26 28 

| AMBIGUITY 
(20)            ||60 60 56 52 50 46 46 40 28 54 46 

=================«==++==== ===== ==== = = = == = i = = = = : = = = = = ===== KCBB1 = ==== =: = — — — : ===== 

| VISIBILITY       || 
(15)            ||45 45 41 41 36 39 25 36 25 30 | X5 

| DATA REPRESENTA-  || 
| TI0N (15)        ||A0 40 40 | 25 | 30 | 35 | 25 i 20 | 35 | 20 115 

| INTERFACES 
(20)            ||53 |43 |40 |45 |37 |42 119 | 30 117 | 20 |34 
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In addition to considering suitability for static verification analysis, 
the importance of each language attribute in the translation process was 
also evaluated. This was done by dividing 100 points among the six 
identified criteria categories, and then correlating each allotment to 
individual attributes within the criteria categories. This system 
reflects the relative positive impact of each attribute on the 
translation process. A higher weighting indicates higher importance. 
Results of application of this weighted rating can be found in Appendix 
A.3. A summary of language evaluation results is listed in Table 3-1 and 
in Appendix A.4. 

Results of this language investigation point to Ada as the language most 
suited for code verification. Ada ranked highest in all of the criteria 
categories used. Ada is governed by a rigorous standard found in 
MIL-STD-1815A. [12] It is a highly structured language with constructs 
limiting ambiguity. Strong visibility and data representation rules 
exist in the language. Ada's weakest characteristics for use in security 
translation include data separation, I/O constructs, and user 
environments. However, Ada still ranks average or above average in these 
categories. 
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SECTION 4 

TRANSLATION APPROACH EVALUATIONS 

4.1  STOS APPROACH 

This chapter delineates a set of rules for translation of C and Ada 
source code to SPECIAL. This translation is a reduction of the source 
code to a high level formal description of source information flow. The 
rules might need to be tailored to applications where specification 
conditions exist that alter proof conditions. For example, in 
applications that have known properties such as hardware security 
features, these specifications may not accurately reflect true system 
characteristics. However, the intention here is to provide general 
translation rules for applications operating in generic environments. 

SPECIAL is a flexible language, intended as a specification for a wide 
range of applications and programming languages. In the following 
translation description, specific type, parameter, and assertion sections 
have been defined. The SPECIAL produced is intended to capture 
information flow, and does not represent functionality (although SPECIAL 
is capable of doing so). 

The following constructs are described to aid in the understanding of the 
resulting translations. A number of these terms are inherent to the 
SPECIAL language (e.g., OFUN, VFUN, NEWALUE, MODULE). Also described 
are COMPUSEC-defined parameters (e.g. COND, FUNCTION, CONSTANTS), which 
aid in the use of SPECIAL as an MLS information flow analysis language. 

• SPECIAL Constructs 

- OFUN. Represents typeless procedures - may be given a 
subject label. 

- VFUN. Represents variables (i.e. integers, characters, 
arrays, etc.) - may be given an object label. 

- NEWALUE. NEWALUE is the SPECIAL equivalent of an 
assignment. It represents flow of information from an 
expression to either an object or variable.  The symbol "'" 
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means NEWALUE, the symbol PN depicts the number of entities 
in the function. 

Example: 

'<data> = FN(<data>, <data>, ...  <data>) 

• COMPUSEC Defined Parameters 

- COND. This is the equivalent of a branch conditional. It 
shows information flow from variables in the conditional 
expression to the block of statements under the conditionals 
flow control. 

Example: 

CONDl(<data>),  C0ND2(<data>,  <data>),  ...   CONDN(<data>, 
<data>, ..<data>) 

- FUNCTION. This is the equivalent of a generic function that 
is dependent upon input data. It appears on the right hand 
side (rhs) of expressions, and represents flow of information 
from every input to the left hand side (lhs). 

Example: 

Fl(<data>), F2(<data>, <data>), ... FN(<data>, <data>,  ... 
<data>) 

- CONSTANTS. These represent placeholders and are intended to 
show correspondence between SOURCE and SPECIAL. LLLLL is a 
generic label placeholder that is used specifically for a 
data item's security label information. 

Example: 

K! 
true 
false 
LLLLL 

4.1.1 Translation Correspondence 

When translating a source language to formulas or to a specification 
language, continuity must be maintained between the resulting translation 
and the functionality represented in the source code.  If the translation 
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accurately represents the functionality of a given source, an observer 
can easily ascertain the correspondence between source and translation by 
contextual clues. Also, if the resulting translation maintains the same 
identifier names as the source, an observer can easily find the 
correspondence between the source and the translation. 

However, practical limitations exist in using functionality to represent 
correspondence. Consider the representation of functionality in 
formulas. This representation wouDd include extensive comments and 
formatting that are not needed in the proof process. The resulting 
translation would be weighted with extra text that must be processed by 
tools and stored in machine memory. Hence, much memory space and CPU 
time would be wasted. 

Naming conventions are a more useful method of maintaining correspondence 
during the translation process. They provide a means of isolating the 
range of possible source that a given translation represents. This range 
could then be examined to discover with certainty the exact 
correspondence. This could be accomplished without adding excessive 
overhead (i.e., space, CPU time) to the translation process. 

The following rules describe the naming convention that will be followed 
in all subsequent translations. This method uses names to provide 
contextual clues that indicate source-to-translation correspondence. 

• Each identifier contains the name of its declaring block. 

• The "#" symbol separates subparts of a name. 

• An increasing integer extension is appended to each instance of a 
data item to disambiguate it from other instances. 

Translation of a source identifier to translation identifier will include 
the name of the declaring block. These entities are readily 
ascertainable in ALGOL-based languages like Ada and C. An extension 
describing the scope of each declared item will be created in the form of 
an increasing integer. In the translation, data item names will be 
written with their extension to remove any ambiguities (i.e., DATAO, 
DATA1, .. DATAn). Extensions involving subparts of a data name will 
also result from concatenating the current extension with each new 
subprogram body name as entered. When a subprogram body is exited, the 
corresponding extension is removed. Sharp signs separate subparts of a 
name, exactly as the dot character in Ada or C. Following this 
convention, if the subprogram or variable has been declared at the 
outermost scoping level, no changes to its name will be made. 

For example, the extension for a function "B" declared in an unnested 
subprogram "A" would be "A#B". If variable "C" is declared within 
function "B," it will be represented as "A#B#C" (this conforms to the Ada 
naming convention). 
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4.1.2 Assignment Statements 

• Expression to Scalar Type 

Statement 

Ada I 

x := 42 * y - (z / w);   j  x = 42 * y - (z / w) 

Translation Rule 

Information flows between every Lerm on the rhs of an assignment 
statement to every term on the lhs of that assignment. 

Translation Results 

'x(LLLLL) = F4(K!,y(LLLLL),z(LLLLL),w(LLLLL)); 

Structured Type to Same Structured Type 

Statement 

Ada |        C 

type smallrec is 
record 

x : integer; 
y : character; 

end record; 

type stuffrec is 
record 
otherstuff : smallrec; 
a,b      : integer; 

end record; 

recl,rec2 : stuffrec 

reel := rec2; 

Translation Rule 

typedef struct smallrec { 
int x; 
char y; 

} 

typedef struct stuffrec { 
struct smallrec 

otherstuff; 
int a,b; 

} 

struct stuffrec recl,rec2; 

reel = rec2; 

The assignment of a variable of structured type to another 
variable of the same structured type will produce as many 
NEWALUE statements as there are scalar types making up the 
structured type. 
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Iransla'-ior. results 

'recl*otherstuff#x(LLLLL) = Fl(rec2#otherstuff#x(LLLLL)); 
'recl#otherstufl#y(LLLLL) = Fl(rec2#otherstuff#y(LLLLL)); 
'recl#a(LLLLL) = Fl(rec2#a(LLLLL)); 
'recl#b(LLLLL) = Fl(rec2#b(LLLLL)); 

Array Components 

Statement 

Ada 

type stuffrec is 
record 

a,b : integer; 
end record; 

type twinarray is 
record 
x, 
y: array (1..10) of 

integer; 
end record; 

type stuffarray is 
array (1..20) of 

stuffrec; 
reel : stuffarray; 
rec2,rec3 : twinarray; 

recl(u).a := 13 * 
rec2.x(v) - rec3.y(w); 

Translation Rule 

typedef struct stuffrec { 
int  a,b; 

} stuffarray[10]; 

typedef struct twinarray { 
int  xll0],y[10]; 

) 

struct stuffarray reel; 
struct twinarray rec2,rec3; 

recl[u].a = 13 * 
rec2.x[v] - rec3.y[w]; 

If a variable of structured type has array type components, then 
any identifiers that are used to index the array are extracted. 
Information flow is shown from the array indices on either side 
of the assignment statement to the variable on the lhs of the 
assignment. 

Translation Results 

'recl#a(LLLLL) = F6(u(LLLLL),K!,rec2#x(LLLLL),v(LLLLL), 
rec3#y(LLLLL),w(LLLLL)); 

Discussion 

Arrays, records, and pointers are different ways of representing 
groups of data items.  They present a problem in translation 
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because these constructs rarely map to a single unit entity, and 
are often composed of many multi-component entities. Information 
flow from using these constructs is non-trivial, and often 
depends on dynamically changing information. In order for 
SPECIAL to represent these constructs, the notion of offsets or 
array indices must be used. The index value used therefore 
becomes part of the potential information flow in any array 
operation. 

RULE:  Information flow from the index always flows 
whether or not the index exists on the lhs or rhs. 

to the lhs 

Records must be handled similarly, where lowest level components 
represent offsets indexed into a data structure. However, unlike 
array indices, records are usually static. 

RULE: Break records into component level information. No 
information is really stored at the top level. This is a 
structural device. Actual variables can be seen as components 
within this structure. 

Pointers combine aspects of both arrays and record structures. 
There is no clear rule for handling pointers. A pointer could 
possibly be shown as a base plus offset. 

4.1.3 Conditionals and Iteration 

"If" Statements 

Statement 

Ada C 

if y > z * aray(i) 
ii == jj; 

else 
kk := 11; 
vv := ww; 

then if (y > (z * aray[i])) 
( 

ii = jj; 
} else { 
kk = 11; 

end if; vv = ww; 
} 

Translation Rule 

Information flows from all identifiers appearing in the condition 
part of the "if" or "else if" statement to all outputs of any 
statements appearing in the "then" or "else"  part of  the  "if" 
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statement. All identifier.-; appearing in the condition are 
collected, an implication statement is generated with these 
identifiers placed on the lhs, and all statements vithin the 
scope of the "if" are placed on the rhs. 

Translation Results 

(C0ND4(y(LLLLL),z(LLLLL),aray(LLLLL),i(LLLLL)) => 
( 'ii(LLLLL) = Fl(jj(LLLLL)) AND 

'kk(LLLLL) = Fl(11(LLLLL)) AND 
'vv(LLLLL) = Fl(vw(LLLLL)) 

)); 

Discussion 

SPECIAL has no inherent limitations for representing 
conditionals. In general, easier translations result if runtime 
processing of conditionals is deterministic. A language with a 
known and static evaluation process at runtime will be more 
easily translated than one with an unknown or dynamic runtime 
evaluation process. As an example of non-deterministic 
processing, consider the following C conditional: 

if ((x = y) && (k == z)) { ... } 

In this example, information flows from y to x, and from y and x 
to the statements within the conditionals block. Information 
does not necessarily flow from k and z to the statements within 
the conditionals block because this part of the expression is 
only evaluated if "(x = y)" is true. Because C short-circuits 
conditional expression evaluation, actual information flow may 
only be known at runtime. Information therefore becomes 
dependent upon partial evaluation of complex expressions. 
Dynamic or unknown evaluation processes of conditional 
expressions may cause some inaccuracy in the representation of 
information flow. These inaccuracies are cosmetic in the sense 
that they are not faults but merely fail to show the true nature 
of the information flow possibilities. 

Clearly, a language with static conditional expression evaluation 
makes for a translation with more accurate representation of 
information flow. In this case, the easiest solution is to 
ignore the problem. Short-circuiting conditional expression 
evaluation can only lessen the total information flow to 
statements within the conditional block. Therefore, no flow will 
be lost by not representing short-circuiting. 
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"Case" Statements 

Statement 

Ada C 

case (x) of switch (x) { 
when 1 => case 1: 

i == j; i = J; 
m := k; n, = k; 

break; 
others = => default: 
c := n; c = n; 

break; 
end case; } 

Translation Rule 

The "case" construct in ALGOL-based languages represents, as a 
translation problem, a special case of a sequence of "if" 
conditionals. It may be represented in the same manner as a 
series of "if" statements, with the same conditional expression. 

Translation Results 

(CONDl(x(LLLLL)) => 
( 'i(LLLLL) = Fl(j(LLLLL)) AND 
'k(LLLLL) = F1(1(LLLLL)) AND 
'm(LLLLL) = Fl(n(LLLLL)) 

)) 

• Conditional Loops 

Statement 

Ada C 

stuff: stuff: 
loop do { 

x := x + 1; x += 1; 
exit when x > A2; if (x > 42) break; 

end loop stuff; } while (1 == 1); 

Translation Rule 

If a name for the loop exists, it will be extracted. If there 
are no conditions for the loop (however, there may be an "if" 
statement that leads into an unconditional exit), then the 
statements within the loop will be processed as if the loop did 
not exist. 
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Translation Results 

(C0ND2Cx(-JLLLL),K!) => ('x(LLLLL) = F2(x(LLLLL) ,K! ) )); 

Iterative Loops 

Statement 

Ada C 

for a in b..42 
loop 

y := a * y; 
end loop; 

for (a = b; a <= 
y *- a; 

42; a++) 

Translation Rule 

Any identifiers appearing in the iteration scheme of a "for" 
statement, in the conditional part of a "while" statement, or as 
conditions for loop exit will be collected and put on the lhs of 
an implication, with the rhs being the translation of any 
statements within the loop. 

Translation Results 

(C0ND3(a(LLLLL),b(LLLLL),K!) => 
( 'y(LLLLL) = F2(a(LLLLL),y(LLLLL))); 

Discussion 

Loops are not a natural construct in SPECIAL. Loops 
are meaningless, because SPECIAL is intended for sta 
In addition, loops may present problems in transla 
they contain potential data flow from control var 
data items being processed within the loop. Contr 
cannot simply be defined as the loop counter 
statement, or the Boolean in a "while" conditional. 
that can cause termination or affect the pri 
variables can be considered to be able to control th 
some cases, loops may be best represented as 
statements. 

in SPECIAL 
tic analysis, 
tion because 
iables to all 
ol variables 
in a "for" 
Any variable 
mary control 
e loop.  In 

conditional 

In some languages, such as Ada and C, loop execution may be 
altered using "break," "continue," or other instructions. These 
instructions may in turn depend upon conditionals that are not 
apparently part of the loop control variables. 

All these dependencies must be identified and then used 
translation to SPECIAL. 

RULE:  Capture and identify all loop control mechanisms. 

in the 
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RULE: Statements capable of altering the performance of loops 
must be identified, and their dependencies translated into 
SPECIAL. 

4.1.4 Parameters and Function "RETURN" Statements 

Parameters 

Statement 

Ada C 

Procedure A( void A(a, b, c) 
a : in integer; 
b : out integer; int a; 
c : in out integer) is int *b; 
begin int *c; 

b := a + c; { 
c := a * c; *b = a + (*c); 

end; *c 
} 

void B 

= a * (*c); 

Procedure B is [) 
x,y,z : integer; int x, y, z; 
begin { 

x := ...; X • = . . . ; 
z := ...; Z  = = • • •; 
A(x,y,z); A(x,&y,&z); 

end; } 

Translation Rule 

-  "In" parameters prior  to  the EFFECTS OF statement,  a 
NEWVALUE statement should be generated to show flow from the 
actual parameter to the new name generated for formal 
parameter (see Section 4.1.1 for naming conventions). All C 
parameters act as "in" parameters. 

"Out" parameters - following the EFFECTS_OF statement, a 
NEWVALUE statement should be generated to show flow from the 
the formal parameter (see Section 5.1 for discussion on 
naming conventions for parameters) to the actual parameter. 

"In out" parameters - produce the results of both 
"out" parameters. 

in' and 
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Translation Results 

OFUN A [LEVEL L] 
EFFECTS 
'A#b(LLLLL) = F2(A#a(LLLLL),A#c(LLLLL)); 
'Attc(LLLLL) = F2(A#a(LLLLL),A#c(LLLLL)); 

OFUN B[LEVEL L] 
EFFECTS 
'B#x(LLLLL) = .. . ; 
'B#z(LLLLL) = . . . ; 
'Afca(LLLLL) = Fl(B#x(LLLLL)); 
'A#c(LLLLL) = Fl(B#z(LLLLL))5 
EFFECTS_OF A; 
'Btfy(LLLLL) = Fl(A#b(LLLLL)); 
'B#z(LLLLL) = Fl(A#c(LLLLL)); 

Discussion 

In all NEWALUE statements generated, if the parameters have a 
record type, then the assignments must be expanded into 
assignments between components of the actual and formal 
parameters. (This is the same as the processing of assignment 
statements involving record variables, see assignment section.) 

If there is an expression appearing as the actual of an "in" 
parameter, then an Fn(...) could be generated to keep the numbers 
and placement of actual and formal parameters consistent, i.e. 

A(x*y,z); 

Becomes 

EFFECTS_OF A(F2(x(LLLLL),y(LLLLL)),z(LLLLL)); 

Function "RETURN" Statements 
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Statement 

Ada C 

function A( int A(x, y) 
x : in integer; int x; 

y : out integer) return int *y; 
int eger is 

begin 
y := x * 2; { 
return y - 1; *y = x * 2; 

end; return (*y - 
} 
void B() 

i); 

procedure B is 
begin { 

a := 1; a = 1; 
c := A(a,b) - 42; c = A(a,&b) - 42; 

end } 

Translation Rule 

If the subprogram returns a value, then a new name for the 
returned value could be made by concatenating the subprogram name 
with returns. This new name should be used in any place that the 
function value is used. An EFFECTS_OF statement should be placed 
preceding the use of the new name. 

Translation Results 

OFUN A [LEVEL L] 
EFFECTS 
'A#y(LLLLL) = F2(A#x,k!); 
'A#returns(LLLLL) = F2(A#y(LLLLL),k!)5 

OFUN B[LEVEL L] 
EFFECTS 
'a(LLLLL) = Fl(k!); 
'A#x(LLLLL) = Fl(a(LLLLL)); 
EFFECTS_OF A; 
'b(LLLLL) = Fl(A#y(LLLLL)); 
'c(LLLLL) = F2(A#returns(LLLLL),k!); 

4.2  STOP APPROACH 

STOF merges two steps of the verification process into one. The 
translation of source to formal top-level specification (FTLS) followed 
by reduction of FTLS to a set of verification formulas is replaced by the 
single step of generation of formulas from the source. 
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The simplest form of a formula describing a security condition has the 
form "lteq(X(labell),Y(label2))." Such a formula will be true if the 
security label of X, labell, is less than or equal to the label of Y, 
label2. A potential security violation exists if the label of Y is less 
than the label of X. The term lteq is used rather than "<=", because the 
ordering of labels may not be a linear ordering (security labels will 
always be partially ordered). 

One lteq formula is generated for each pair of data items between which 
information flows. A simple example of an information flow is the 
assignment statement: 

Y := X; 

There is an information flow from X to Y.  This is an example of direct 
information flow.  In this case, the security label of X must be less 
than or equal the security label of Y. Another simple example is the 
"if" statement: 

if x < 10 then 
z := 1 

else 
z := 2 

end if; 

In the "if" statement above, there is an indirect information flow from x 
to z, and a formula will be generated comparing the label of x to the 
label of z. The existence of the flow can be seen by noting that 
examination of the value of z will determine a range of values for x. A 
combination of several inferences such as this one might be combined to 
precisely determine the value of x. If x were labelled secret and z were 
labelled unclassified then secret information could potentially be 
inferred from unclassified information. 

Throughout the discussion of STOF, the formula "lteq(x,y)M will be taken 
to mean "lteq(x(labell),y(label2))." It will be assumed that there is a 
database, such as a data dictionary, which contains all given security 
label information. This database can be accessed by STOF and searched to 
determine the label of any data item appearing within an lteq formula. 

The rules for determining information flow within a source program are 
independent of verification—they are part of the semantics of the source 
language. To generate formulas directly from source code, the rules 
about information flow within the source language are implemented as a 
translation program. Two examples of general rules are: 

• Information flows from the rhs of an assignment statement to 
lhs of the assignment. 

the 

• Information flows from any data items appearing in the 
conditional part of an "if" statement to any output of the 
statements appearing within the branches of the "if" statement. 
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The amount of detail showing which outputs are dependent on which inputs 
determines how specific the verification formulas will be. If an lteq 
formula is generated for every combination of input and output of a 
procedure, then it is certain that all information flow has been 
captured. However, some of the formulas may represent information flow 
that does not exist. The processing must be examined to prevent 
generation of spurious formulas. 

The generation of formulas for all combinations of input and output may 
at times be appropriate. During development some modules may be 
completed before others, and testing of the system in an unfinished state 
is possible using the interfaces for the uncompleted portions of the 
system and assuming the worst case (of information flow) for those 
portions. 

The following formulas are represented in both a prefix and infix 
notation. The semantic meanings of these notations are identical, only 
the syntactics differ. Prefix notation places the operators at the 
beginning of the corresponding operands, while infix notation places them 
in the middle of the operands. 

4.2.1 Assignment Statements 

• Expression to Scalar Type 

Statement 

Ada           |       C 
 1  

xl := 42 * yl -       |  xl = 42 * yl - 
(z2 / x2);    | (z2 / x2); 

Translation Rule 

Information flows from all data items on the rhs of an assignment 
statement to the data item on the lhs of the assignment 
statement. The following flows are present in this example: 

42 -> xl,  yl -> xl,  z2 -> xl,  x2 -> xl 

Resulting Formulas 

Flow from constants is captured - constants may or many not 
be given security labels (same in Infix standard as in Prefix 
Boyer-Moore) 

lteq(42,xl), lteq(yl.xl), lteq(z2,xl), lteq(x2,xl) 
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Flow from constants is ignored (same in Infix standard as  in 
Prefix Boyer-Moore) 

lteq(yl?xl),  lteq(z2,xl),  lteq(x2,xl) 

• Structured Type to Same Structure Type 

Statement 

Ada |        C 

type smallrec is 
record 

x : integer; 
y : character; 

end record; 

type stuffrec is 
record 
otherstuff : smallrec; 
a,b       : integer; 

end record; 

recl,rec2 : stuffrec 

reel := rec2; 

Translation Rule 

typedef struct smallrec { 
int x; 
char y; 

} 

typedef struct stuffrec { 
struct smallrec otherstuff; 

int a,b; 

} 

struct stuffrec recl,rec2; 

reel = rec2; 

Information flows between a component of the record variable on 
the rhs of the assignment to the corresponding component of the 
record variable on the lhs of the assignment. 

The following flows are present in the above example: 

rec2#otherstuff#x -> recl#otherstuff#x, 
rec2#otherstuff#x -> recl#otherstuff#x, 
rec2#a -> recl#a, 
rec2#b -> recl#b 

Resulting Formulas 

(Same in Infix standard ar in Prefix Boyer-Moore.) 

lteq(rec2#otherstuff#x,recl#otherstuff#x), 
lteq(rec2#otherstuff#x,recl#otherstuff#x), 
lteq(rec2#a,recl#a), 
lteq(rec2#b,recl#b) 
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• Array Components 

Statement 

Ada 

type stuffrec is 
record 

a,b : integer; 
end record; 

type twinarray is 
record 
x, 
y: array (1..10) of 

integer; 
end record; 

type stuffarray is 
array (1..20) of 

stuffrec; 

reel     : stuffarray; 
rec2,rec3 : twinarray; 

recl(u).a := 13 * 
rec2.x(v) - rec3.y(w); 

Translation Rule 

typedef struct stuffrec { 
int  a,b; 

} stuffarray[10]; 

typedef struct twinarray { 
int  x[10],y[10]; 

} 

struct stuffarray reel; 
struct twinarray rec2,rec3; 

recl[u].a = 13 * 
rec2.x[v] - rec3.y[w]; 

If a variable of structured type has array-type components, then 
any identifiers used to index the array are extracted. 
Information flow is shown from the array indices on either side 
of the assignment statement to the variable on the lhs of the 
assignment. 

Information flows from the array variable on the rhs of the 
assignment statement to the identifier on the lhs. 

Information flows from any identifiers used to index the 
array variable on the rhs to the identifier on the lhs. 

Information flows from any identifiers used to index an array 
variable appearing on the lhs to the identifier on the lhs. 

The following flows are present in the above example: 

13 -> recl#a, 
u -> recltfa, 

rec2#x -> recl#a, 
v     -> recltta, 

rec3#y -> reclta 
w     -> recl#a 
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Resulting Formulas 

(Same in Infix standard as in Prefix Boyer-Moore) 

lteq(13,recl#a), lteq(rec2#x,reclfla), lteq(rec3#y,recl#a) 
lteq(u,recl#a),  lteq(v,reclja),     lteq(w,recl#a) 

A.2.2 Conditionals And Iteration 

"If" Statements 

Statement 

Ada C 

if (xl < yl) then 
zl := x2 

else 
z2 := y2 

end if; 

if (xl < yl) 
zl = x2; 

else 
z2 = y2; 

Translation Rule 

There is information flow from any data items involved in the 
conditional part of an "if" statement to any outputs of any 
statements contained within the "if" statement. 

The following flows are present in this example: 

xl -> zl, 
yl -> z2, 

Resulting Formulas 

xl -> z2, 
x2 -> zl, 

yl -> zl, 
y2 -> z2 

Omitting conditional information (same in Infix standard as 
in Prefix Boyer-Moore) 

lteq(xl,zl),  lteq(xl,z2),  lteq(yl,zl) 
lteq(yl,z2),   lteq(x2,zl),  Iteq(y2,z2) 
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Retaining conditional information 

Infix (standard) Prefix (Boyer-Moore) 

(xl < yl) => lteq(xl,zl) 

not (xl < yl) => 
lteq(xl,z2) 

(xl < yl) => lteq(yl,zl) 

not (xl < yl) => 
lteq(yl,z2) 

(xl < yl) => lteq(x2,zl) 

not (xl < yl) => 
lteq(y2,zl) 

(IMPLIES (LESSP xl yl) 
(lteq xl zl)) 

(IMPLIES (NOT (LESSP xl yl)) 
( xl z2)) 

(IMPLIES (LESSP xl yl) 
(lteq yl zl)) 

(IMPLIES (NOT (LESSP xl yl)) 
(lteq yl z2)) 

(IMPLIES (LESSP xl yl) 
(lteq xl zl)) 

(IMPLIES (NOT (LESSP xl yl)) 
(lteq y2 zl)) 

"Case" Statements 

Statement 

Ada C 

case xl is switch (xl) { 
when 1 => x2 := zl; case 1 : x2 = zl; 
when 2 => y2 := yl; case 2 : y2 = yl; 
when 3 => z2 := xl; case 3 : z2 = xl; 
when others => default: 

x2 := z2; x2 = z2; 
end case; } 

Translation Rule 

Information flows from the expression part of the "case" to any 
output of a statement within each alternative of the "case". In 
both Ada and C the values used to denote each alternative are 
constants (string or enumerated) and for this reason can usually 
be ignored. 

The following flows are present in the above example: 

xl -> x2, 
zl -> x2, 

xl -> y2, 
yl -> y2, 

xl -> z2, 
xl -> z2, 

xl -> x2, 
z2 -> x2, 

(The flows (xl -> z2) and (xl -> x2) appear twice, one of each of 
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these can be omitted during the proof process, with the single 
remaining formula of each representing both possibilities of 
each.) 

Resulting Formulas 

- Without using conditional or value information about  'x2' 
(same in Infix standard as in Prefix Boyer-Moore) 

lteq(xl,x2),  lteq(xl,y2),  lteq(xl,z2),  lteq(xl,z2), 
lteq(zl,x2),  lteq(yl,y?),  Iteq(z2,x2) 

- Using conditional but not value information about "x2" 

Infix (standard) 

condl(xl) => lteq(xl,x2) 

condl(xl) => lteq(zl,x2) 

condl(xl) => lteq(xl,y2) 

condl(xl) => lteq(yl,y2) 

condl(xl) => lteq(xl,z2) 

condl(xl) => lteq(xl,x2) 

condl(xl) => lteq(z2,x'5.) 

Prefix (Boyer-Moore) 

(IMPLIES (CONDI xl 
(lteq x 

(IMPLIES (CONDI xl 
(lteq z 

(IMPLIES (CONDI xl 
(lteq x 

(IMPLIES (CONDI xl 
(lteq y 

(IMPLIES (CONDI xl 
(lteq x 

(IMPLIES (CONDI xl 
(lteq x 

x2)) 

x2)) 

y2)) 

y2)) 

z2)) 

x2)) 

(IMPLIES (CONDI xl) 
(lteq z2 x2)) 
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- Using conditional and value information about "x2" 

Infix (standard) Prefix (Boyer-Moore) 

(xl = 1) => lteq(xl,x2) 

(xl = 1) => lteq(zl,x2) 

(xl = 2) => lteq(xl,y2) 

(xl = 2) => lteq(yl,y2) 

((xl = 3) or (xl = 4)) 
=> lteq(xl,z2) 

(xl <> 1) and (xl <> 2) 
and (xl <> 3) 
and (xl <> 4) => 
lteq(xl,x2) 

(xl <> 1) and (xl <> 2) 
and (xl <> 3) 
and (xl <> 4) => 
Iteq(z2,x2) 

(IMPLIES (EQUAL xl 1) 
(lteq xl x2)) 

(IMPLIES (EQUAL xl 1) 
(lteq zl x2)) 

(IMPLIES (EQUAL xl 2) 
(lteq xl y2)) 

(IMPLIES (EQUAL xl 2) 
(lteq yl y2)) 

(IMPLIES (OR 
(EQUAL xl 3) 
(EQUAL xl A)) 

(lteq xl z2)) 

(IMPLIES (AND 
(NOT (EQUAL xl 1)) 
(NOT (EQUAL xl 2)) 
(NOT (EQUAL xl 3)) 
(NOT (EQUAL xl 4))) 

(lteq xl x2)) 

(IMPLIES (AND 
(NOT (EQUAL xl 1)) 
(NOT (EQUAL xl 2)) 
(NOT (EQUAL xl 3)) 
(NOT (EQUAL xl 4))) 

(lteq z2 x2)) 

Conditional Loops 

Statement 

Ada C 

stuff: stuff: 
loop do { 

xl := xl + yl; xl = xl + yl; 
exit when x2 > 42; if (x2 > 42) break; 

end loop stuff; } while (1 == 1); 
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Translation Rule 

If a name for the loop exists, then it will be extracted. If 
there are no conditions for the loop (there may be an "if" 
statement that leads into an unconditional exit, however), then 
the statements within the loop will be processed as if the loop 
did not exist. 

The following flows are present in the above example: 

x2 -> xl,    42 -> xl,    xl -> xl,    yl -> xl 

Resulting Formulas 

(Same in Infix standard as in Prefix Boyer-Moore) 

lteq(x2,xl), lteq(42,xl), lteq(xl,xl), lteq(yl,xl) 

Iterative Loops 

Statement 

Ada |        C 

for xl in yl..42 
loop 

y2 := xl * zl; 
end loop; 

Translation Rule 

for (xl = yl; 
xl <= 42; 
xl++) y2 = xl * zl; 

Any identifiers appearing in the iteration scheme of a "for" 
statement, or in the conditional part of a "while" statement, or 
as conditions for exiting the loop will be collected, and put on 
the lhs of an implication, with the rhs being the translation of 
any statements within the loop. 

The following flows are present in the above example: 

xl -> y2, 
xl -> y2, 

yl -> y2, 
zl -> y2 

42 -> y2, 

Resulting Formulas 

(Same in Infix standard as in Prefix Boyer-Moore) 

lteq(xl,x2),  lteq(yl,y2),  lteq(42,y2), 
lteq(xl,y2),  lteq(zl,y2), 
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A.2.3 Parameters and Function "RETURN" Statements 

• Parameters and Function "Return" 

Statement 

Ada           ! C 

function A( A(xl,yl) 
xl,yl : integer) int xl.yl; 
return integer is { 

y2 :integer; int y2; 
begin y2 = xl * yl; 
y2 := xl * yl; return (y2-l); 
return y2 - 1; } 

end; 

procedure B is B() 
xl,yl,zl : integer; { 
begin int xl,yl,zl; 

xl := 1; xl = 1; 
yl := 2; yl = 2; 
zl := A(xl,yl) - 42; zl = A(xl,yl) - - 42; 

end } 

Translation Rule 

Subprogram parameters: 

"In" parameters - there is information flow from the actual 
parameter to the formal parameter. All C parameters act as 
"in" parameters. 

"Out" parameters - there is information flow from the formal 
parameter to the actual parameter. 

"In out" parameters - there is bidirectional flow between the 
formal parameter and the actual parameter. 

Return statements: 

There is information flow from any data items 
appearing in a return statement to any expression in 
which the function is invoked. 

Renaming conventions are as described earlier. 
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The direct flows present: 

1 -> B#xl, 2 -> B#yl, 
B#yl -> A#yl A#xl -> A#y2, 
A#y2 -> Aflreturns, 1 -> A#returns, 
B#yl -> Atyl, Aftreturns -> B#zl, 
B#xl -> A#xl, B#xl -> A#y2, 
A#yl -> A#y2, 2 -> B#zl 

Ignoring flows from constants, and applying 
transitivity, the following additional flows are 
found: 

B#xl -> A#returns, B#xl -> B#zl, 
B#yl -> B#zl, A#xl -> A#returns, 
A#yl -> Atreturns, A#yl -> B#zl, 
A#xl -> B#zl, B#yl -> A#returns 
A#y2 -> B#zl, 

Resulting Formulas 

(Same in Infix standard as in Prefix Boyer-Moore) 

lteq(l,B#xl), lteq(2,B#yl), 
lteq(B#yl,A#yl), lteq(A#xl,A#y2), 
lteq(A#y2,A#returns), lteq(l,A#returns), 
lteq(B#yl,A#yl), lteq(A#returns,B#zl), 
lteq(B#xl,A#returns), lteq(B#xl,B#zl), 
lteq(B#yl,B#zl), lteq(A#xl,A#returns), 
lteq(A#yl,A#returns), lteq(A#yl,B#zl), 
lteq(B#xl,A#xl), lteq(B#yl,A#returns), 
lteq(A#yl,A#y2), lteq(A#xl,B#zl), 
lteq(B#xl,A#y2), lteq(A#yl,B#zl) 
lteq(2,B#zl), 
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SECTION 5 

THEOREM PROVER EVALUATIONS 

Once either STOS or STOF has produced a formulas file, it must be 
integrated with a theorem prover to determine whether the generated 
statements are true or false. One advantage of STOF is that it will be 
designed to adapt with various theorem provers while STOS is restricted 
to the theorem provers used by HDM. The STOF verification approach 
offers users flexibility in choosing a theorem prover. 

Three existing theorem provers are good candidates for use with STOF. 
These are Boyer-Moore, Shostak, and COMPUSEC. 

5.1 BOYER-MOORE 

The Boyer-Moore theorem prover [3] is currently being used with the 
standard HDM toolset. Characteristics of this existing theorem prover 
include: 

• Implemented in Interlisp 

• Notation for input is lambda calculus in prefix format 

• Runs in a fully automatic state (user cannot guide proofs during 
run-time—does not provide interactive aid to finding proofs) 

• Handles induction, propositional logic,  user-defined recursive 
functions 

• Report generation is clear and well-organized 
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5.2  SHOSTAK 

The Shostak. theorem prover has been developed for use with  the 
Enhanced-HDM toolset. Features of this theorem prover include: 

• Implemented in MACLISP 

• Notation for input is predicate calculus 

• Runs in a fully automatic state, but is user guided (requires an 
instruction queue) 

• Handles propositional logic user-defined recursive functions— 
will handle induction in the future 

5.3 COMPUSEC 

The COMPUSEC theorem prover is still under development; however, the 
majority of the tool has already been implemented and tested. COMPUSEC 
has conducted an in-house comparison on the operation of the Boyer-Moore 
theorem prover and the COMPUSEC theorem prover. The COMPUSEC theorem 
prover was found to require substantially less computational time and 
resources than the Boyer-Moore theorem prover when proving identical 
theorems. The following characteristics are either already implemented 
in the COMPUSEC theorem prover or will be implemented in the near future: 

• Implemented in VAX-Pascal 

• Notation for input is standard predicate calculus in infix format 

• User has option of running theorem prover in an interactive state 
or a fully automatic state 

• Currently handles propositional logic - will handle induction and 
user-defined recursive functions in near future 

• Faster computation time than Boyer-Moore 

• Report generation will be clear and well-organized - can be 
tailored to user's needs 
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SECTION 6 

SOURCE CODE VERIFICATION TOOL SPECIFICATIONS 

6.1  STOS CODE VERIFICATION TOOL 

6.1.1 SOURCE Subset Bandied By STOS 

Programming language power and flexibility may conflict with clear 
representation of information fa.ow. Some language constructs (such as 
pointers) can cause information flow that cannot be anticipated or 
derived from static examination of the source. Indeed, most languages 
include a mechanism for inserting comments into the source code for 
clarification of such ambiguities. However, such comments are only 
programmer aids and do not represent valid input for a formal 
specification. Additionally, program source can be obscure if the source 
language does not formally specify the actions resulting from a given 
construct. An example can be found in Ada multi-tasking: multi-tasking 
is a feature of the language, but a description of how memory allocation 
is handled during processing of this feature is not explicitly stated. 
In such cases it is not possible to derive accurate formulas specifying 
information flow and correctness. Hence, in translation of a source to 
formulas, the source language must be restricted to an unambiguous subset 
that can be formally stated. 

To determine which constructs of the Ada language will be included in the 
Ada subset, each construct must be analyzed for its inherent security 
properties. Constructs that are not well-defined with respect to 
processing and memory allocation are not suitable for STOS. Such 
constructs generate information flows that cannot be definitively 
specified with formulas. If non-deterministic information flows were 
allowed in the formal verification process, any resulting proofs would 
also be non-deterministic. Examples of constructs that fall into this 
category are "exception," "generic," and "task." 

• Description 

Certain criteria must be met in order to define an Ada subset 
that  is both functional and verifiable.  Any constructs that 
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present problems in formula generation must be either omitted or 
restricted in the subset. Naturally, restricting the use of a 
programming language in this way will inhibit some of its 
usefulness in writing applications. Care must be taken to ensure 
that the verifiable subset does not significantly limit 
programming applications. 

During lexical analysis all Ada reserved words are recognized; 
however, only those contained in the subset are processed. 
Messages will be generated to flag each encountered Ada construct 
that is not part of the specified subset (see Table 6-1). 

• Specification 

Following is a specification containing all Ada constructs that 
are included in the STOS SOURCE subset. All punctuation existing 
in the Ada language will be included within the Ada subset. This 
includes binary operators (i.e., +, /, -, and *). 

<blocks> - These constructs act as headers used to group 
specific portions of the code. They define the processing 
bodies for the program. 

begin 
body 
end 
package 
use 
with 

declarations and types> - These constructs provide a means 
for defining different entities. The type of an item 
dictates which operations are permitted on that item. 

array out 
at procedure 
constant range 
delta record 
digits renames 
function separate 
in subtype 
is type 
of 

<operators> - These constructs represent specific functions 
that are to be performed on associated entities. 

abs or 
all rem 
and reverse 
mod xor 
not 

6-2 



Table 6-1. Ada Reserved Words Handled By STOS 

*abort begin case ^declare else 
abs body constant *delay elsif 

*accept delta end 
*access digits *entry 
all do ^exception 
and exit 
array 
at 

for 
function 

^generic 
*goto 

if 
in 
is 

*limi ted 
loop 

mod 

*new 
not 
null 

of package *raise ^select 
or *pragma range separate 
others *private record subtype 
out procedures rem 

renames 
return 
reverse 

*task 
*terminate 
then 
type 

use when 
while 
wi th 

xor 

* Not member of verifiable Ada subset 
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<statements> - These constructs combine to form a list of all 
the possible Ada statements that can be analyzed using the 
STOS approach. 

case loop 
do null 
else others 
elsif return 
exit then 
for when 
if while 

6.1.2 SPECIAL Subset Used By STOS 

HDM is an aid to design, implementation, and verification of software 
systems. It includes the language SPECIAL, the theorem prover, and the 
MLS formula generator used for multilevel security. HDM has been used 
widely in the verification of software currently in use by the Department 
of Defense. 

Specifications of a multi-level secure (MLS) system can be written in 
SPECIAL [21]. A SPECIAL specification provides a description of the 
external visible behavior of a system (i.e., a description of how the 
system responds to each possible external stimulus). Possible external 
stimuli are defined as the invocation of the visible operation references 
(a visible operation together with a particular set of values for its 
arguments). The specification describes how the internal state of the 
system changes when a particular visible operation reference is invoked 
and identifies the value returned by the invocation of the operation 
reference. 

MLS models require that there be a set  of values,  L,  which act  as 
security levels and that these values be partially ordered under some 
binary relation, named here as "lteq". This information must be provided 
before a proof can be attempted. 

Applying the MLS proof tools yields a listing of the attempted proofs of 
a set of formulas. If the attempted proofs of all the formulas are 
successful, this implies that the specification is MLS with respect to 
the given security levels. Note that the proof does not determine how 
the security levels are interpreted or how access to them is controlled 
in a given implementation. 

SPECIAL was originally designed as a vehicle for specifying system 
development using a top-down approach. It is a broad language consisting 
of many constructs that are intended to represent functionality and/or 
information  flow.   When  using SPECIAL as a vehicle for formal 
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verification, information flow is the primary concern. Constructs 
dealing solely with functionality are unnecessary. In fact, only a 
subset of the SPECIAL language is supported by the HDM MLS tool. These 
factors render the use of an unabridged SPECIAL both inefficient and 
unnecessary in the STOS approach. Therefore, a subset of the language 
must be specified for use with STOS. 

• Description 

A module specification in SPECIAL consists of six paragraphs, 
each of which is optional in a given specification. In its most 
general form, the top-level structure looks like: 

MODULE <symbol> 

TYPES 
<types body> 

PARAMETERS 
<parameters body> 

DEFINITIONS 
definitions body> 

EXTERNALREFS 
<externalrefs body> 

ASSERTIONS 
<assertions body> 

FUNCTIONS 
<functions body> 

END_MODULE 

- The TYPES paragraph contains the declarations for all 
internal named types (including designator types) used in the 
module specification. The only two types which are necessary 
for tracing information flow follow. 

a. "LABEL" represents the security label of subjects and 
objects within the specification. LABEL can be 
represented as either a designator or as an aggregate of 
designators (one designator for each component of the 
security label). 

b. "DATA" is used to represent a single object. Structured 
objects are split into their component parts when 
represented in FTLS, with each component being 
represented by a distinct object. 
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The PARAMETERS paragraph contains the declarations for 
symbolic constants called module parameters. Module 
parameters are similar to V-functions (defined in the 
FUNCTIONS paragraph) except that their values cannot be 
changed. These symbols are used to represent either 
information flow out of one or more objects or constants 
whose properties are defined by assertions rather than 
function definitions.  [12] 

A module parameter that must appear in all FTLS used for 
security analysis is "lteq" (less than or equal to). The 
format used is lteq(DATA L1,L2). The format of "lteq" is 
defined in the PARAMETERS paragraph, and its actual effects 
are defined in the ASSERTIONS paragraph, "lteq" determines, 
by comparing security labels of objects LI and L2, if 
information flow is allowed from LI to L2. 

The following module parameters were developed by COMPUSEC 
specifically for use in security analysis. The first two are 
symbolic constants, the rest are parameters used for 
specifying information flow. 

a. K! - represents any unlabeled constant. In almost all 
cases constants are unimportant to the security aspects 
of information flow, and hence are represented by a value 
which will be ignored by the MLS tool. 

b. LLLLL - represents any unknown security label. No 
assertions are made in the FTLS about the state of LLLLL 
and hence if an MLS analysis is made on FTLS containing 
LLLLL, there will be a security flaw shown at every 
appearance of an LLLLL. 

c. Fn (i.e. Fl, F2...Fn) - is a place holder for n objects. 
For example, an entry in the PARAMETERS paragraph would 
have the form: 

F3(DATA V1.V2.V3), 

where "F3" shows information flow from three objects. 
When processing the statement 

Y := Z - X + 42; 

The information flow within this statement is in no way 
dependent on the arithmetic operations, and hence the 
FTLS would contain the statement 

'Y = F3(Z,X,K!); 
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d. CONDn - behaves exactly like Fn. "COND" is used when 
generating FTLS for conditional statements, and is used 
instead of 'F' for readability purposes. An example of 
its use is the translation of the statement 

if X < Y then 
Z := X; 

This will be represented in the FTLS by 

C0ND2(X,Y) => 
('Z = F1(X)); 

The DEFINITIONS paragraph contains the definitions for 
macro-like auxiliary function definitions. A common use of 
the DEFINITIONS paragraph is to represent a complex 
structured entity using a single symbol. For example, a 
three compartment label can be represented by a single string 
if the following definition is made: 

LEVEL C_0_0 IS LABEL(CC,00,CC); 

(LABEL would have to have been defined in the PARAMETERS 
paragraph as type LEVEL, and LEVEL defined as STRUCT_0F(DATA 
C1,C2,C3) where C1,C2, and C3 are the names of the three 
compartments. ) 

The EXTERNALREFS paragraph contains the declarations for 
other modules that are externally referenced in the 
specification. These objects include designator and scalar 
types; V-, 0-, and OV-functions (defined in FUNCTIONS 
paragraph); and parameters. 

The ASSERTIONS paragraph contains assertions that are 
constraints on the module's parameters, and invariants of the 
module that need to be proved from its specification. The 
ASSERTIONS paragraph is used in security FTLS to define the 
properties of "lteq." These assertions determine which 
information flows will be allowed during MLS analysis. The 
truth value of lteq(X,Y) is asserted to be either true or 
false for pairs of security labels. In the case of 
compartmented labels, lteq is defined as the conjunction of 
truth values of relations between corresponding components of 
the two labels. 
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The following assertions could be made  for uncompartmented 
labels: 

lteq(unclassified,unclassified), 
{ read as unclassified may flow into unclassified } 
Iteq(unclassified,confidential), 
{ read as unclassified may flow into confidential } 
lteq(confidential,secret), 
{ read as confidential may flow into secret } 

~lteq(secret,unclassified) 
{ read as secret may not flow into unclassified } 

If labels have two compartments representing classification 
and integrity, then two new functions will be needed for 
comparison of the components: 

slteq(X,Y)      - used for classification checks 
ilteq(X,Y)       - used for integrity check 

The relationship between lteq and the two functions slteq and 
ilteq is then asserted in the FTLS by 

FORALL DATA XI; DATA 115 
DATA X2; DATA Y2; 
lteq(LABEL(Xl,Yl),LABEL(X2,Y2)) = 

(slteq(Xl,X2) AND 
ilteq(Yl,Y2)); 

This states that lteq is true if and only if slteq and ilteq 
are simultaneously true. 

- The FUNCTIONS paragraph contains the definitions for all V-, 
0-, and OV-functions of the module. A VFUN returns a value. 
An OFUN changes system state. An OVFUN changes system state 
and returns a value. The actual information flow within the 
system is represented in this paragraph. The structure of 
expressions appearing in the FUNCTIONS paragraph was 
described in the discussions of translation methodology of 
STOS. 

In defining a SPECIAL subset, certain criteria must be met. All 
constructs in the defined subset must be supported by the HDM MLS 
tool. Also, the SPECIAL subset must be able to adequately 
specify, with respect to information flow, the chosen source 
subset. 
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The SPECIAL language consists of the keywords found in Table 6-2. 
The following punctuation is specific to the SPECIAL language: 

' - new value 
=> - implies 
? - undefined 
-> - function return value 
$( ) - comment 

Punctuation generic to all languages (i.e., +, -) is included in 
the SPECIAL language. It performs the same basic functions as in 
other programming languages. However, this punctuation is not 
specified as part of our subset and therefore will not be 
detailed in this report. 

o  Specification 

SRI International, the developers of the HDM toolset, placed 
certain restrictions on SPECIAL for use with HDM. These 
restrictions, as stated below, form a baseline for our subset of 
the language.  [22],[23] 

No recursive or mutually recursive definitions are permitted. 

- The key words NEW, TYPECASE, and RESOURCE_ERROR may not be 
used. 

- An expression may contain no more than one reference to a new 
value. A new value is either a quoted V-function reference 
(i.e. 'identifier), an EFFECTS_OF expression, or, in an 
OV-function, a return value reference. 

In the effects of an OV-function, the return value reference 
may occur only once. 

A new value reference may not occur in: 
— The qualification part of a LET, FORALL, EXISTS, 

SOME, or set expression. 
— The antecedent of an implication. 
— The boolean expression in an "if" expression. 
— The range of a vector constructor. 

If the specification consists of more than one module, the 
directed graph of external references between the module must 
have no loops. 

COMPUSEC has extensive practical experience using SPECIAL. From 
this knowledge base, COMPUSEC has limited the list of useable 
constructs even further to produce a more concise and effective 
security analysis language. Also, COMPUSEC has designed some 
additional constructs in SPECIAL, which aid in the security 
analysis of the system.  These constructs (COND, F, K!, DATA, 
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LEVEL, LLLLL) function as parameters in the language. A 
description of all SPECIAL constructs [24] and COMPUSEC-developed 
constructs that combine to form the SPECIAL subset for STOS are 
found in Table 6-2 and in the following descriptions: 

<blocks> - These constructs act as headers used to identify 
specific parts of the SPECIAL program. The PARAMETERS 
section is where the COMPUSEC-developed constructs (DATA, 
LEVEL, COND, F, LLLLL, and K!) are defined. DATA and LEVEL 
are used to define identifiers which represent security label 
information. The ASSERTIONS section specifies the security 
rules by which information flow is analyzed. 

ASSERTIONS FUNCTIONS 
DATA LEVEL 
DECLARATIONS MODULE 
DEFINITIONS PARAMETERS 
EFFECTS TYPES 
EXTERNALREFS 

declarations and types> - These constructs are used as 
descriptors of identifiers. They define how a variable will 
be represented and manipulated within the program. 

BOOLEAN OVFUN 
DESIGNATOR STRUCT 
FORALL STRUCT_0F 
OFUN VFUN 
ONE_OF 

<operators> - These constructs represent specific functions 
that are to be performed on associated entities. Of 
particular interest is the operator F which stands for 
"function of." This is one of the COMPUSEC-developed SPECIAL 
constructs. It is a generic symbol to represent the 
dependency of a "new value" on the identifiers involved in 
its creation. It addresses information flow for any and all 
possible operations without concern for algorithmic 
functionality. 

AND OF 
COND OR 
F WITH 
FROM => 
IN ? 
IS -> 
NOT 
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Table 6-2.  SPECIAL Constructs Handled By STOS 

and boolean •cardinality declarations effects_of 
assertions •char definitions effects 

•assert •delay 
derivation 
designator 

•diff 

else 
end 
end i f 

•end map 
end module 

•exceptions 
•exceptions of 
exists 
externalrefs 

false hidden if •let •map 
•for in •length •mappings 
forall initially •max 
from •inset •min 
functions •inter 

•integer 
•invariants 
is 

•mod 
module 

•new of parameters •real •set_of 
not ofun •resource error •some 

•on struct 
one of struct of 
or •subset 
ovfun 

then •undefined •vector •with 
•to •union •vector of 
true •until vfun 
types 

•typecase 

• Not member of verifiable Ada subset 
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identifiers and expressions> - These constructs are a means 
of specifying different identifiers and expressions in the 
language. For example, all constants are represented as K! . 
LLLLL is a place holder for an unknown label. 

FALSE LLLLL 
K! TRUE 

<statements> - These constructs identify specific types of 
statements in SPECIAL. Each time the value of a variable is 
modified, it is represented by a "new value" (') statement. 

DERIVATION EXISTS 
EFFECTS_OF IF 
ELSE INITIALLY 
END THEN 
END_IF 
END_MODULE 

<visibility rules> - The HIDDEN construct restricts 
referencing of VFUNs. When used, only the module in which 
the VFUN exists may reference the VFUN. 

HIDDEN 

6.1.3 STOS Cross-Compiler Specification 

The subset of the Ada language described in the previous section is input 
to STOS for translation. STOS will output a FTLS that captures all 
information flow represented in the Ada source code. STOS will also 
label the FTLS so that it can be submitted to HDM's MLS tool for 
generating verification conditions. Output from the MLS tool can then be 
submitted to the theorem prover. 

The components of STOS are: 

• Ada Security Analyzer 

Lexical Analyzer 
Parser 

• Labeler 
• Propagator 
• SPECIAL generator 
• Automated Tracer 

These components combine to form the cross compiler. Each phase will be 
specified in subsequent sections. 
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Figure 6-1 depicts a high level description of the component steps in the 
STOS cross-compiler. Subsequent sections describe each component in 
further detail. Required functionality is specified for each component. 
Details of implementation (i.e. choice of program source language, type 
of parser) are left to the implementor. 

6.1.4  STOS Ada Security Analyzer 

• Lexical Analyzer 

The Lexical Analyzer (see Figure 6-2) acts as the interface 
between the source program and the parser. It reorganizes Ada 
source code into a format that is readable by the parser. During 
this phase, the Ada source is modified by introducing tokens to 
the code. 

- Description 

The Lexical Analyzer reads the source program one character 
at a time, carving the source program into a sequence of 
atomic units called tokens. Each token represents a sequence 
of characters that can be treated as a single logical entity. 
Identifiers, keywords, constants, operators, and punctuation 
symbols (i.e., commas and parentheses) are typical tokens. 
For example, the following Ada statement contains seven 
tokens: 

Ada Tokens 

if (I = MAX) then if 

( 
I 

MAX 

) 
then 

In general, each token is a substring of the source program 
and is to be treated as a single unit (it is not reasonable 
to treat M or MA of the identifier MAX in the example above 
as an independent entity). There are two kinds of tokens: 
specific strings such as "if" or a semicolon, and classes of 
strings such as identifiers, constants, or labels. 

The Lexical Analyzer can also be used to customize 
compilation in order to reflect application or security 
requirements.  It can retrieve and insert code referenced  by 
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Ada "include" statements. It can also capture information 
flow contained in externally referenced files such as library 
routines, and can comment out certain routines determined to 
have no security relevance. It can resolve user definitions. 
Finally, the Lexical Analyzer can format system requirement 
comments in order to facilitate automated requirements 
traceability (see Section 6.1.8). 

- Specification 

The Lexical Analyzer will take Ada source code as input and 
return tokens as specified by the syntax given in 
ANSI-MIL-STD-1815A [9]. The Lexical Analyzer shall read a 
single character at a time from the input Ada source code. 
The Lexical Analyzer will then identify and isolate symbols 
from this character stream by following lexical rules for 
detecting symbol boundaries. As a symbol is found it is 
looked up in the stored symbol table. When a symbol match is 
found in this table, the value associated with the symbol 
shall be used to determine symbol type. 

The token shall be returned in two parts: The first part 
represents the token value, the second represents the token 
type. Token values can be ASCII values for strings, numbers, 
symbols, or null. Token types can be constant, identifier or 
the valid Ada delimiters, keywords, and operators. 

Token values shall be: ASCII or numeric value for constants, 
ASCII string value for identifiers, ASCII value for 
delimiters and operators, Null for reserved words. 

Parser 

The parser serves two primary functions. First, it checks that 
the tokens appearing in its input occur in patterns that are 
permitted by the specification for the source language. Second, 
it creates a tree-like representation of the input using these 
tokens (see Figure 6-3). The generated parse tree is used in 
subsequent phases of the STOF cross-compiler. 

- Description 

Input tokens are checked for syntactic and semantic 
correctness before the parse tree is created. Syntax and 
semantic errors can therefore be flagged. The Ada 
expression in the following example will generate an 
error when it is evaluated by the parser: 
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Ada 

A + / B 

Parser Input 

A-identifier 
+-operator 
/-operator 
B-identifier 

The parser's syntax analyzer will detect an error when it 
receives the /-operator token, because the presence of 
two adjacent binary operators violates Ada expression 
formation rules. 

The parser will also analyze Ada type declarations and 
enter type information into the symbol table. Type 
information is necessary to determine a statement's 
semantic consistency. In Ada, a single data name may be 
used to reference several distinct data items declared in 
different scopes. The symbol table is used to 
distinguish different contexts where the same data item 
names are used. 

Although the parser does not need to allocate space for 
different types, it must match types and maintain unique 
names. Context-dependent Ada data item names must be 
changed to unique names that can be used throughout the 
entire translation. One way to accomplish this is to 
append a number to each declared instance of a name. 

The generated parse tree must show the hierarchical 
structure of the incoming token stream. This is 
accomplished by grouping together tokens from the token 
stream. Token groupings will then reflect processing 
sequence according to the semantics of the Ada language 
specification. 

Specification 

The parser shall accept tokens generated by the Lexical 
Analyzer. Type information shall be extracted from 
tokens and entered into the symbol table. Unique names 
shall be established and maintained for every data item 
even when the same name is used in different contexts. 
Tokens and unique names shall be grouped to reflect the 
hierarchical structure of the input source code. A parse 
tree is constructed from this source. Initial and final 
conditions for each statement are stored at the same 
point in the tree as the statement. The output parse 
tree shall be suitable for use in subsequent phases of 
the cross-compiler. 
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6.1.5 STOS Labeler 

Labeling is a necessary phase in the verification of an MLS system. It 
serves to identify objects and subjects that require special handling for 
security by associating a label classification. It also allows an 
information flow analysis tool to identify flows that can potentially 
compromise classified information (see Figure 6-4). 

• Description 

The Labeler reads the static label data base from disk and stores it 
in a format suitable for high speed label retrieval. The Ada parse 
tree is input to the labeler with data items in the tree having an 
empty slot for a label. For each data item in the parse tree, the 
labeler will search the static label data base for the corresponding 
label. If the label is found, the labeler will insert the label from 
the static data base into the empty slot. If the label is not found, 
the slot will be filled with an unspecified floating label. 

In this manner, the labeler will fill the parse tree with static and 
unspecified floating labels. 

• Specification 

The Labeler will take as input a data base of static label 
information and the parse tree as generated by the STOS parser. It 
shall label data items in the parse tree with labels from the data 
base of static labels. 

Data items will be tuples composed of a data name and label. The 
parse tree from the Ada STOS parser will be a structure delineating 
hierarchically the operations end data items of the source with 
floating unspecified labels. 

The static label data base will be composed of data items with static 
labels; that is, data items with known unchanging labels. 

The labeler's primary action will be to associate entries in this 
data base with entries found in the parse tree. It shall then label 
every data name in the parse tree with the corresponding data base 
entry label. 

This action shall serve to label all statically labeled data items in 
the parse tree. All unlabeled data items will default to floating 
labels to be set later by the propagator. 
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6.1.6  STOS Propagator 

Label propagation is the process by which labeling information is 
transferred from data items with static labels to data items with 
floating labels. This happens when information from the static item is 
passed to the floating item. If the static label is higher than the 
floating label, the floating data item will contain information from the 
static item. Therefore, it should also have this dominant label. Thus, 
in this phase, unlabeled and floating data items are labeled with the 
highest label of the information they will contain (see Figure 6-5). 

• Description 

On input of the Ada parse tree, the propagator's task, is to 
determine the dependencies of unspecified floating labels on 
statically labeled data items. The propagator will then change 
these unspecified labels to the most dominant label of the data 
items on which they depend. To do this, the propagator uses 
knowledge about labels and their relationships. It must also 
have knowledge about dependencies shown in the Ada parse tree, 
and in the static labels set by the labeler. 

Labeling conflicts may occur during label propagation. The 
propagator must have facilities for reporting errors resulting 
from conflicts between static and floating labels. This output 
should be able to reference data items as shown in the Ada source 
by line numbers showing the correct data name. 

• Specification 

The propagator will take as input an Ada parse tree generated by 
the STOS Ada parser. This parse tree will indicate information 
flow and dependencies through a hierarchical structure. 

Data items given floating unspecified labels in the parse tree 
will be collected. For each of these data items, a dependency 
list will be established. This list will show dependencies 
between data items with floating labels and all other data items 
that pass information to them. 

For every data item with a floating label, the propagator will 
determine the most dominant label in its dependency list and will 
set the floating label to that label. It will repeat this 
process until all floating labels are given the most dominant 
label in their dependency lists. Any resulting conflicts will be 
reported. 
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6.1.7  STOS SPECIAL Generator 

The SPECIAL generation phase converts a labeled Ada parse tree into a 
sequence of SPECIAL instructions representing information flow. Ada 
Assignment statements, conditionals, loops, procedures, and functions 
represented in the parse tree will be translated into valid SPECIAL 
statements (see Figure 6-6.) 

• Description 

The SPECIAL generator will essentially reduce source code to a 
high level formal description of source code information flow. 
Translation rules may need to be tailored for applications where 
conditions exist that affect theorem proving. For example, 
applications that take advantage of known hardware security 
features may not reflect this in their source code. In any case, 
certain general translation rules can be specified and followed. 
In addition, some optimization could be performed during SPECIAL 
generation in order to remove any redundant information flows. 

• Specification 

Input to the Special generator is the parse tree generated by the 
STOS parser. Output from the special generator is the special 
translation of the Ada source. As a minimum, the following set 
of translation rules will be applied to the input parse tree: 

- Assignment Statements 

a. Every term on the lhs of an assignment statement will 
cause a NEWVALUE statement to be generated that is a 
function of every term on the rhs of the assignment. 

b. The assignment of a variable of structured type to 
another variable of the same structured type will produce 
as many NEWVALUE statements as there are scalar types 
making up the structured type. 

c. If a variable of structured type has array type 
components, then any identifiers that are used to index 
the array are extracted. Information flow is shown from 
the array indices on either side of the assignment 
statement to the variable on the lhs of the assignment. 

- Conditionals 

a. Information flows will be shown from all identifiers 
appearing in the condition part of the "if" or "else if" 
statement to all "outputs" of any statements appearing in 
the "then",  or "else" part of the "if" statement.  All 
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identifiers appearing in the condition are collected, and 
an implication statement is generated with these 
identifiers placed on the lhs, "while" all statements 
within the scope of the "if" will be placed on the rhs. 

The "case" construct will be represented as a series of 
"if" statements having the same conditional expression. 

- Loops 

If the loop is named, it will be extracted and stored. 
If there are no conditions on the loop then statements 
within the loop will be processed as if the loop did not 
exist. "If" statements leading to an unconditional exit 
will be flagged. 

Any identifiers appearing in the iteration scheme of a 
"for" statement, existing in the conditional part of a 
"while" statement, or representing conditions for loop 
exit will be collected and put on the lhs of an 
implication, with the rhs representing the translation of 
any statements within the loop. 

- Parameters and Function "RETURN" Statements 

a. "In" parameters will cause a NEWALUE statement to be 
generated prior to the EFFECTS_OF statement that shows 
flow from the actual parameter to the new name generated 
for the procedure's formal parameter list. 

b. "Out" parameters will cause a NEWALUE statement to be 
generated following the EFFECTS_OF statement that shows 
flow from the formal parameter to the actual parameter. 

c. "In out" parameters will produce both of the above 
results. 

d. If a subprogram returns a value, a new name for the 
returned value will be made by concatenating the 
subprogram name with the phrase "returns". This new name 
will be used in any place that the function value is 
used. An EFFECTS_OF statement will be placed preceding 
the use of the new name 
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6.1.8 STOS Automated Tracer 

It is desirable to trace system requirements through progressive software 
design stages and into the implemented code. Establishment of 
correspondence between requirements and code simplifies the problem of 
demonstrating that a system is ready to be deployed. Automating this 
traceability could decrease the cost of certifying a software 
system. [24],[17] 

o Description 

The STOS cross-compiler could be used to support automated system 
requirement traceability. The pre-processor could format 
comments that contained requirements identifiers so that the 
comment also contained the name of the task or procedure in which 
it occurred. This modified source would be suitable for use as 
input to the tracer. 

o Specification 

Tracer inputs shall be a suitably commented Ada source code 
module and a numerically organized system requirements list. Ada 
source code input shall include comment statements for tasks or 
procedures that contain a requirement identifier referencing the 
relevant system requirement. 

For each numbered requirement in the requirements list, the 
tracer shall search the Ada source code comments for a matching 
requirement identifier. If a match is found, the tracer shall 
identify the task or procedure containing the comment along with 
the source code line number. If no match is found, then the 
tracer will output the requirement number followed by an error 
message. 

6.2  STOF CODE VERIFICATION TOOL 

A subset of the Ada language can be input to STOF for translation (see 
Section 6.3.1). STOF will output a file of formulas that captures all 
information flow (as specified in Sections A.2 through A.2.3). In 
addition to generalizing formulas about information flow, STOF can 
generate a formula file representing proof of correctness properties 
found in the Ada source code (see Section 6.3.2). Either one or both 
formulas files can be input to a theorem prover. 

Proof of correctness for programs is discovered by using predefined 
axioms to repeatedly rewrite formal logical statements about the program 
until the statements can be proven true.  Failing to prove a statement 
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true does not always mean that the program is incorrect — it may be the 
result of a lack of information in the logical statements about the 
program, or insufficient power in the theorem prover. 

The major difference in the approaches to MLS analysis and proof of 
correctness is the kind of information that is primarily used. In the 
case of MLS analysis, information flow is the predominant consideration. 
In proof of correctness, control flow and state information are the most 
important. 

The components STOF are: 

• Ada Security Analyzer 

Lexical Analyzer 
Parser 

• Security Graph Generator 
• Verification Condition Generator (VCG) 

- MLS Flow Analyzer 
Proof of Correctness Analyzer 
Formatter 

• Environment Support Tool 

Figure 6-7 shows the STOF cross-compiler.  Individual components will be 
described in the following sections, and required functionality will be 
specified for each component. Details of implementation (i.e., choice of 
program source language, type of parser) are left to the implementor. 

6.2.1 SOURCE Subset Handled By STOF 

Programming language power and flexibility may conflict with clear 
representation of information flow. Some language constructs, such as 
pointers, can cause information flow that cannot be anticipated or 
derived from static examination of the source. Indeed, most languages 
include a mechanism for inserting comments into the source code for 
clarification of such ambiguities. However, such comments are only 
programmer aids and do not represent valid input for a formal 
specification. Additionally, program source can be obscure if the source 
language does not formally specify the actions resulting from a given 
construct. An example can be found in Ada multi-tasking: multi-tasking 
is a feature of the language, but how memory allocation is handled during 
processing of this feature is not explicitly stated. In such cases it is 
not possible to derive accurate formulas specifying information flow and 
correctness. Hence, in translation of a source to formulas, the source 
language must be restricted to an unambiguous subset that can be formally 
stated. 
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To determine which constructs of the Ada language will be included in the 
Ada subset, each construct must be analyzed for its inherent security 
properties. Constructs that are not well-defined with respect to 
processing and memory allocation are not suitable for STOF. Such 
constructs generate information flows that cannot be definitively 
specified with formulas. If non-deterministic information flows were 
allowed in the formal verification process, any resulting proofs would 
also be non-deterministic. Examples of constructs that fall into this 
category are "generic" and "task." 

• Description 

Certain criteria must be met in order to define an Ada subset 
that is both functional and verifiable. Any constructs that 
present problems in formula generation must be either omitted or 
restricted in the subset. Naturally, restricting the use of a 
programming language in this way will inhibit some of its 
usefulness in writing applications. Care must be taken to ensure 
that the verifiable subset does not significantly limit 
programming applications. 

During lexical analysis all Ada reserved words are recognized; 
however, only those contained in the subset are processed. 
Messages will be generated to flag each encountered Ada construct 
that is not part of the specified subset (see Table 6-3). 

• Specification 

Following is a specification containing all Ada constructs that 
are included in the subset. All punctuation existing in the Ada 
language will be included within the Ada subset. This includes 
binary operators (i.e., +, /, -, and *). 

<blocks> - These constructs act as headers used in order to 
group specific portions of the code. They define the 
processing bodies for the program. 

begin package 
body use 
declare with 
end 
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Table 6-3.  Ada Reserved Words Handled By STOF 

*abort begin case declare else 
abs body constant *delay elsif 

•accept delta end 
•access digits •entry 
all do exception 
and exit 
array 
at 

for •generic if •limited 
function goto in 

is 
loop 

mod 

•new 
not 
null 

of package raise •select 
or •pragma range separate 
others •private record subtype 
out procedures rem 

renames 
return 
reverse 

•task 
•terminate 
then 
type 

use when 
while 
with 

xor 

• Not member of verifiable Ada subset 
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declarations and types> - These constructs provide a means 
for defining different entities. The type of an item 
dictates which operations are permitted on that item. 

array 
at 
constant 
declare 
delta 
digits 
exception 
function 
in 
is 

of 
out 
procedure 
range 
record 
renames 
separate 
subtype 
type 

<operators> - These constructs represent specific  functions 
that are to be performed on associated entities. 

abs 
all 
and 
mod 
not 

or 
rem 
reverse 
xor 

<statements> - These constructs combine to form a list of all 
the possible Ada statements that can be analyzed using STOF. 

case 
do 
else 
elsif 
exit 
for 
goto 
if 

loop 
null 
others 
raise 
return 
then 
when 
while 

6.2.2 Proof Of Correctness Formulas 

With STOF, the Ada subset must be translated into formulas that can be 
analyzed for both MLS and proof of correctness properties. In the 
specification that follows, the formulas are written in infix format for 
ease of understanding and explanation. However, if desired, the formulas 
could be represented in other formats as well. 

• Description 

The following specification describes  the statements in the 
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subset of Ada appropriate for use as part of an STOF system. A 
proof rule (as used by STOF) and a graphical representation of 
each statement exist. The proof rule in each case is represented 
either as a single expression or as an implication. 

Rules that are represented by a single expression are processed 
directly by the formula generator. Rules that are represented as 
an implication have both an lhs component and an rhs component. 
The lhs of the implication is the rule that would be processed by 
the formula generator, and the rhs of the implication is the way 
the statement would appear in the source. 

The following notations are used in the proof rules [25]: 

- P - a logical statement 

{P) - a logical statement that is a condition that must be 
satisfied.  Alternately, a pre-condition. 

{Q} - a logical statement that is a condition that must be 
satisfied.  Alternately, a post-condition.. 

P(N) - the effects of a call  to logical statement  P with 
formal parameter N 

- P(X|Y) - in the logical statement P, systematically replace 
all occurrences of X by Y 

- P(N)(N|A) - the effects of a call  to P with  the formal 
parameter N replaced by the actual parameter A 

r(F) - a return statement of a function with the name F 

- S - results of  processing  the  program  statement(s) 
represented by S 

- H - attribute and axiom information derived from declarations 

«L>> - a label named L 

=> - implies 

<= - less than or equal to 

• Specification 

- Null Statements 

The null statement  in Ada has no effect,  and can be 
represented by 
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{PJ null {PJ 

If pre-condition P is true then the post-condition P is  true 
(unchanged). 

Graphic Representation: 

c- 
IP) 

-o 
If ! 

null 

Assignment Statements 

{P(X|E)) X := E (P) 

If all occurrences of X are replaced by E in the logical 
statement P, then the statement, X:= E, is true. 

Graphic Representation: 

(P(XIE)J 

o 
(p) 

Conditionals 

a.  "If" Statement 

Two different proof rules exist depending on inclusion or 
exclusion of an else part. 

(({P and B) S {0}) and ({P and ~B} => {Q})) => 

if B then 
S 

end if 
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In order to prove the post-condition follovs from the 
pre-condition plus the processing, two things must be 
proved: 

1. The pre-condition P along vith the condition B (equal 
to true in this case) and the results of processing S 
must imply the post-condition Q. 

2. The pre-condition along vith the condition B equal to 
false must imply the post-condition Q. 

Graphic Representation: 

**o 
IP)   (3) 

if.. then...endif 

or 

({P and B} S {Q)) and ({P and ~B) T {Q)) => 

{P} 
if B then 

S 
else 

T 
end if 
{Q} 

The pre-condition P, the condition B if true, and the 
results of processing S must imply the post-condition 
0. 

The pre-condition P, the condition B if false, and 
the results of processing T must imply the 
post-condition Q. 
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Graphic Representation: 

+ Q 

(P)   IB) 

it.. th*>p. elr.o. f-ridif 

"Case" Statement 

"Case" statements are similar to "if" statements in many 
ways. The notation E=Ci is used to imply that the 
expression E has a value which is selected by the choice 
Ci; this is also used to cover the 'when others' 
alternative if it is present. 

for each i {P and (E = Ci)} Si {Q} => 

{P} 
case E is 
when CI => SI 
when C2 => S2 

end :ase 
{0} 

For each of the possible values of the "case" switch E, the 
pre-condition  together with  the  current value and the 
processing associated with the current value must  imply the 
post-condition. 
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Graphic Representation: 

cer.e F ir wh^n end CES^ 

"Goto" Statement 

A compound statement S containing the statement goto <<L>>, 
and not containing the label <<L>>. 

{PJ S {Q) or at «L» {R} => 

If pre-condition P is true 

1. S terminates normally and (Q) is true 

2. Execution of S terminates with a 'goto L' and {R) is true 
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Graphic Representation: 

NEW EDGE TO T, 

FORMER EDGE TO R 

£r = ooto<<L>> 

'Loop" Statement 

a.  "While" Statement 

{P and B) S {P} => 

{P} 
while B 

loop 
S 

end loop 
{P and ~B) 

The pre-condition together with the processing must show 
that the "while" condition B is no longer true and the 
"loop" invariant P is still true after (possibly 
repeated) processing of statement S. 

Graphic Representation: 

IP AND B) 

-o 
IP) 

while ... loop ..  end loop 
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b.  "For" Statement 

The antecedent of this rule states that for all I between 
M and N, if the predicate P is true for all steps up to 
(but not including) I, and the statement S is carried 
out, then the predicate P will be true for I. 

(standard notation '..' is used to indicate intervals) 

(M <= I) and (I <= N) and (P([M..I))}  S  {P(lM..I])J 
=> 

{pum 
for I in M..N 

loop 
S 

end loop 
{P([M..N])} 

Graphic Representation: 

c  
I (run AND V    J P(IM..I]> 
(KN) AND 
PCIM..I])] 

for ... in .. loon ., end loop 

"Exit" Statement 

({P} S {Q)> and ({Q and B} T {PJ) => 

(P) 
loop 

S 
exit when ~B; 
T 

end loop 
{Q and ~B} 

Two possibilities need to be proved: 

1.  The pre-condition P together with the processing of 
statement S imply the post-condition Q. 
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2. The post-condition 0 together vith the condition B 
not false and the processing of statement T imply the 
"loop" invariant P. 

Graphic Representation: 

Loop .,   ?yit when   .   end lo op. 

Concatenation 

This rule describes what is involved  in combining  two  (or 
more) statements. 

{P} S {Q} and {0} T {R} => 

{P} S T {R} 

If two statements are represented by 

{P} S {QJ,  {R} T {U} 

then the statements may be combined if 

Q => R 

Giving the statement 

{P} S T {UJ 
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Graphic Representation: 

o—rr^—c-* -K)—GD o 
iDi >  ir.   I ir...l 1..1 IP) ICJ.I ICiy] 

IP) 
C ££} £T} o 

    IR] 

S,T,0, =>0? 

Declarations 

a.  Type Declaration 

Each type declaration results in the generation of 
assertions  to be added to the set H. The collection of 
declarations D is processed until all type declarati 
have been removed and their corresponding axioms added 
the set H. 

H includes all the attributes and associated axioms, etc. 
associated with the type T.  (Subtype declarations are 
similar) 

H {P} D begin S end (Q) => 

{P} 
type T is .. .; 
D 

begin 
S 

end 

Uninitialized Variable 

H contains information about X derived from its 
declaration; this includes its attributes and the axioms 
the attributes satisfy. The symbol Tu stands for an 
undefined variable of type T. 

H {P and X' = Tu} D(X|X') begin S(X|X') end {Q} => 

m 
X : T; 
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D 
begin 

S 
end 

{0} 

Each declaration of a variable results in the addition of 
assumptions available to the theorem prover. In the case 
of an uninitialized variable X, 

1. An assertion is made that the variable X' has the 
attributes of an uninitialized variable of type T 

2. X is replaced throughout the block by X' 

c.  Initialized Variable 

H has the same meaning as in the rule for uninitialized 
variables. 

H {P and X' = E) D(X|X') begin S(X|X') end {0} => 

{P} 
X : T := E; 
D 

begin 
S 

end 

{Q} 

1. An assertion is made that the variable X' has the 
attributes of an variable of type T, and is equal to 
the value of E. 

2. X is replaced throughout the block S by X'. 

d.  Constant 

{P} D(X|E) begin S(X|E) end {Q} => 

m 
X : constant T := E; 
D 

begin 
S 

end 
{0} 

X is replaced throughout the  block S by  the  constant 
value E. 
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- Blocks 

D represents a set of declarations of possibly different 
varieties and S represents a sequence of statements. 

H {P and R] S {Q} => 

IP) 
D 
begin 

S 
end 

10) 

H represents the information including the set of axioms and 
attributes derived from the declarations contained in D. R 
represents the set of initializations derived from the 
declarations of D. 

Graphic Representation: 

O O        S        O 
H {P AND R) V J <Q) 

beoin .   end 

Subprograms 

a.  Function 

A pre-condition will be associated with the function that 
describes the range of values of and the relationships 
between the variables. There will also be a 
post-condition of some kind that describes the result 
obtained by calling the function. 

The proof of correctness of a function definition is 
independent of the proof of correctness for a call to 
that function. When the function is defined, a proof is 
carried out showing that if certain pre-conditions are 
met, then the processing within the function will 
guarantee that certain post-conditions will hold. Vhen 
the  function  is  called,  then  the proof   that  the 
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pre-conditions are met is sufficient to prove that the 
post-conditions will hold. 

A skeleton declaration of F can be written as 

function F(N: ...) return ... is 
-pre {P(N)} 
-post {0(N,r(F))} 

begin 
S 
end F; 

The proof rule for a function call F(A) of function F can 
be expressed as 

({P(N)J S'; «END» null; (Q(N,r(F))}) 

and (exists Z s.t.  P(N) => Q(N,Z))=> 

P(N)(N|A) => Q(N,r(F))(N|A,r(F)|F(A)) 

Each function definition is maintained as a distinct 
graph. The representative top-level graph for a function 
is: 

Graphic Representation: 

c ( s" ) o o 
{P(N)J V---/      (Q(N,r(F)))  (exists z 

P(N)=QCN,2)) 

function .    return .    if ..   heoin   .   end 

The antecedent of the rule for functions states that: 

1. If the input requirements are met, then the value 
returned by the function will meet the output 
requirement. 

2. For every valid input N, there is a function value 
that satisfies the output requirement. 

The consequent of the rule for functions states that if 
the input conditions have been met using the actual 
parameters, then the post-condition will hold for those 
actuals. For a call of the function the graph is 
manipulated in the following manner: 
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Graphic Representation: 

!P(NIA)=>0(N|A,r(F)|F(A)) 

r(F) = F(A) 

Recursive Function 

To cope vith recursion it is necessary to add to the 
antecedent a variant of the consequent, such as 

P(N)(N|A1) => 

Q(N,r(F))(N|Al,r(F)|F(Al)) 

This formula states that if an actual Al is supplied to 
the function's formal parameter N, then the output 
assertion vill be true when the parameter is replaced by 
Al and the return value of F is replaced by the recursive 
call of the function. 

It is possible to extend this formula to functions of 
several variables, as veil as to mutually recursive 
functions. In order to prove total correctness, it has 
to be shown that the evaluation of all parameters vill 
terminate and that there is some ordering associated vith 
the values of successive parameters. On successive 
calls, the values of the parameter must belong to a 
veil-founded set, and must decrease. 

Procedure 

Assuming three formal parameters M, N, and 0 the 
procedure T is vritten 

procedure T(M: in ...; N: in out ...; 0: out ...) is 
— pre {P(M,N)} 
— post (Q(M,N,0)} 

begin 
S 
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end T; 

The proof rule for the procedure call T is 

{P(M,N'in)J S [Q(M,N'in,N'out,0)J => 

(P(M|AfN|B,0|C)) 
T(A,B,C) 
(Q(M|A,N|B,0|C)] 

If the pre-condition P(M,N'in) of the procedure T can be 
satisfied using the substitutions (M|A), (N|B), (0|C), 
then the post-condition will be true (using the same 
substitutions). 

As vith function definitions, each procedure definition 
is represented by a distinct graph: 

Graphic Representation: 

|P(M,N'i")) 

-o 
lom.N.o)] 

procedure . is . p^o"-'  erid 

Each call of a procedure causes the following alteration 
in the graph: 

|P<rilA,N|B)->OCM|A.N!B.OIC>] 

The parameters must be shown to satisfy the  type 
conditions and constraints.  These checks can be left to 
the compiler.  As vith functions the antecedent  of  the 
implication need be proven only once, vith only the entry 
condition needing to be proved for each call  to  the 
procedure. 
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"Return" Statement 

Each return statement 

return E; 

that appears within a function is replaced hy the pair of 
statements 

r(F) := expression; 
goto END; 

where <<END>> (a unique label generated by STOF) and a null 
statement are placed at the end of the definition of the 
function. 

Graphic Representation: 

<<Qt»'D>> 

<<EMD>> 

return 

- Globals 

Use of globals within a subprogram can be treated in the same 
manner as parameters if the following rules are used: 

a. Globals accessed for reading purposes only should be 
treated as Ada "in" parameters. 

b. Globals that are updated directly, or indirectly 
using another subprogram, should be regarded as Ada 
'in out' parameters. 

Exceptions 

The effect of a block in which an exception may occur is 
equivalent to the effect of either: 

a.  The normal execution of the statements of the block. 
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b. The normal execution of  the statements up to the 
point where the exception is raised, followed by the 
effect of executing  the appropriate  exception 
handler. 

Case (a) does not require any modifications to the graph, 
because the flow of control is not modified if there is no 
exception raised. 

Case (b) requires the following modifications of the graph. 

a. Each point in the graph that could lead to the 
raising of an exception must be identified, along 
with the particular exception that would be raised. 

b. The exception handlers for each possible exception 
must be identified within the graph. 

c. The equivalent of an 'if...then...endif' is inserted 
at the point where the exception could occur. 

1. The node representing the conditional part of the 
graph holds the condition that will cause an 
exception. 

2. The 'then' part of the graph, which is followed 
if the conditions causing an exception to be 
raised are met, is represented by a jump to the 
appropriate exception handler. This is shown as 
an edge in the graph leading to the part of the 
graph holding the handler. 

3. If the conditions leading to an exception are not 
met, then the normal flow of control is followed. 

The following exceptions are predefined in Ada: 

CONSTRAINT_ERROR, NUMERIC_ERROR, PROGRAM_ERROR, STORAGE_ERROR, 
TASKING_ERROR 

Of this list, all but TASKING_ERROR need to be considered  by 
STOF. 
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Graphic Representation: 

(l >:ci in ;IIIJ coijni i IOI,') 

erccnt ioris 

6.2.3 STOF Ada Security Analyzer 

The specification of the STOF Ada Security Analyzer is the same as that 
already specified for STOS since both operate on Ada source code input. 
(See Section 6.2.2.) 

6.2.A STOF Security Graph Generator 

The Security Graph Generator takes the parse tree as input and creates a 
digraph for use by both the MLS Formula Generator and the Proof of 
Correctness Formula Generator. This graph depicts all of the components 
and interactions that exist in the system being analyzed. The resulting 
graph contains nodes that represent statements (components) and arrovs 
that represent relationships (interactions) (see Figure 6-8). 

• Description 

The use of graphical analysis of a system for MLS has been 
demonstrated by the program BTOS. A description of this program 
appears in the paper "Examination of Multi-Level Security From 
Data Flow Graphs," presented at the 1985 AFCEA Conference on 
Physical and Electronic Security, held in Philadelphia, 
PA. [9] An extension of the techniques used in BTOS are 
appropriate for use in STOF. 

The same flov graph may be used by both the MLS flow analysis and 
the proof of correctness analysis.  The information stored in the 
graph is manipulated differently depending on the type of 
analysis being performed. 
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Figure 6-8.  Security Graph Generator 
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Nodes are generated for the following constructs (these represent 
the verifiable subset of the Ada language): 

null, assignment, conditional, goto, loop, exit, return, 
block, procedure/function calls, procedure/function 
bodys, type/variable/constant declarations, exceptions 

o Specification 

The graph of two successive statements is made up of the 
composition (concatenation) of the graphs of the two statements. 
Complex statements are represented by a hierarchy of nodes where 
the subnodes are the component statements making up the complex 
one. [26] 

The following steps are used in transforming the annotated source 
into the graph. 

- A node is constructed for each logical condition and for each 
statement.  The types of nodes that can be constructed are: 

a. Declarations 

type/variable/constant 
procedure/function 

b. Pre-conditions 

c. Statements 

d. Post-conditions 

Declarations are treated separately from other statements 
because, rather than transforming data, they initialize 
values and add information to the knowledge base available 
when performing proofs on the associated statements. 

- Compound statements are decomposed into a hierarchy of nodes. 
The top-most node represents the compound statement and each 
subnode represents an individual statement within the 
compound statement. Subnodes that are themselves 
representatives of compound statements are further decomposed 
in the same manner. 

Decomposition continues until the statement is atomic (cannot 
be further decomposed).  Atomic statements in the verifiable 
subset are those that do not contain other statements, such 
as:  null, assignment, goto, and exit. 
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Statements that cause jumps in the flow of control (such as 
goto, exit, raise, return) are analyzed and the edges of the 
graph are modified to show the jump. 

6.2.5  STOP Verification Condition Generator 

• MLS Flow Analyzer 

The MLS Flow Analyzer is a VCG that reads the digraph output by 
the Security Graph Generator, and creates a set of formulas to 
submitted to the Formatter. The first step is to analyze all 
paths of the graph for information flow 
dependencies. [27] During this phase, labeling and propagation 
of the data items occurs. The existing flow dependencies along 
with labeling information are represented in the list of formulas 
generated by the MLS Flow Analyzer (see Figure 6-9). 

- Description 

The formal model is a statement of the security policy in a 
formal mathematical language. The mathematical language must 
be sufficiently powerful to embody the concepts presented in 
the security policy. The language must also be amenable to 
proofs showing the consistency of the model with the policy 
and the internal consistency of the model. Statements made 
in the mathematical language must be usable with little or no 
translation as requirements of the verification process. 

- Specification 

The MLS proof of secure behavior proceeds in the following 
manner: 

a. The source is analyzed to determine all paths through 
which information can flow. 

b. All information dependencies are collected as a list of 
pairs (X,Y), where information flows from X to Y (Y 
depends on X). Along with each pair there may be a set 
of logical statements that form a pre-condition for flow 
of information from X to Y. 

c. For each pair, a formula is produced in the form: P => 
lteq(X,Y). This is read as 'if the condition P is true 
then the security label of X must be less than or equal 
to the security label of Y'.  P represents the collected 
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Figure 6-9. MLS Flow Analyzer Components 

6-52 



control/type/etc.  information that  the flow X -> Y 
depends on. 

d. Each of the formulas is passed to a theorem prover, which 
can be fully automated, interactive, or human. 

e. If all formulas generated by steps 1-3 are proved 'true' 
by the theorem prover, then the system is secure 
(according to the security model, which is implemented by 
steps 1,2). 

• Proof of Correctness Analyzer 

The Proof of Correctness Analyzer is a VCG, and performs some 
basic functions similar to the MLS Flow Analyzer. It reads the 
digraph resulting from the Security Graph Generator and creates a 
set of formulas to be submitted to the Formatter. The first step 
is to analyze the graph to find all paths. Logical conditions 
that appear on the paths are analyzed to create proof of 
correctness formulas (see Figure 6-10). 

- Description 

Verification conditions (VCs) for a program are composed of 
logical formulas from from two sources: the underlying 
axioms of the programming language, and the logical 
conditions imposed by the program specifications. The 
correctness of a program is the problem of solving the series 
of logical formulas that lead from the program entry to the 
program exit. 

Syntactically correct programs are made up of a composition 
of atomic statements such as assignment and null. Each of 
these operations can be axiomatized and represented as nodes 
in a digraph. Program specifications are added to these 
nodes as pre-conditions, post-conditions, etc. 

The process of generating VCs for a program is  that of 
finding all paths  through the representative graph of the 
program and collecting the logical conditions that appear on 
those paths. 

- Specification 

The entry conditions for a block of processing describe the 
conditions that the input must meet in order for the output 
to be meaningful. If the entry conditions are not met, then 
the use of the block cannot be considered correct. If the 
entry conditions are met, and the block has  been previously 
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verified to be correct, then the output conditions of the 
block will hold. 

The format (see belov) for a proof of correctness of a single 
Ada block is 

H {P and R) S {0), 

where H represents attribute and axiom information derived 
from declarations, {P) is the set of pre-conditions, (R) 
represents initialization values, S is the processing and {Q} 
is the set of post-conditions that must be satisfied. This 
format (or an abbreviated version) is used throughout. The 
graphical representation of such a block is: 

o o     s     o 
H IP AND R] V J (0) 

begin     end 

The specification formally describes the net transformation 
of inputs into outputs. The code must be proven to produce 
exactly that transformation. Using the input conditions as 
assumptions, together with any relevant axioms about the data 
structures being used, the processing is analyzed to 
determine what inferences can be made about the data after 
the block is finished. If the processing is correct, then 
the combination of the effects of the processing and the 
initial assumptions and axioms should suffice to prove that 
the exit conditions hold. 

These are conditions that need to be met after a segment of 
code has been analyzed and its effects have been calculated. 
The exit conditions describe the relationships between and on 
data items after processing has concluded. When connecting 
several blocks of code, the exit conditions of a block should 
imply the entry conditions of the next block. If the entry 
conditions plus processing imply the exit conditions in every 
block, and the exit conditions of each block imply the entry 
conditions of the following block, then the entire collection 
will be correct. 

Some problems exist with proving total correctness of a 
system. [28],[10] There are examples of programs that work, 
but for which proofs are elusive. The following program 
(which is an implementation of an open problem in number 
theory) calculates the number of steps it takes to reduce a 
positive integer to 1 using the following rules: 
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If the number is 1 then stop. 

If a number is even divide it by 2. 

If a number is odd, multiply it by 3 and add 1. 

This recurrence relation works (apparently) for all integers 
greater than zero. There is no known proof that this routine 
will always terminate. For all values that have been tried 
the routine works. The implementation of the above rules in 
Ada would be: 

function step(i : integer) return integer is 
begin 
if (i = 1) then 

return 1; 
elsif (i mod 2) = 0 then 

return step(i / 2) + 1; 
else 

return step((3 * i) + 1) + 1; 
end if; 
end step; 

This sort of problem would not be acceptable for analysis by 
mechanical theorem proving because of the nature of the 
parameter i. In order to show that the function terminates, 
it must be possible to show that there is a well-founded 
relation on the parameter such that the value of the relation 
goes down after every invocation of the function. [2] 

The standard less than (<) for integers cannot be used as the 
well-founded relation on i, due to the possibility that a 
recursive call will be made using ((3 * i) + 1), which (for 
positive integers) is larger than i. A well-founded relation 
for i would have to show that each successive recursive call 
of the function is nearer to returning a result than the 
last. 

The properties of a proof of correctness for this particular 
program are: 

a. The pre-condition for this program is simple:  i > 0. 

b. The post-condition is also simple: the return value is 
exactly the depth of recursive calls of the function. 

c. Proof of partial correctness is possible, as it 
corresponds to a proof that the depth of recursion (the 
number of steps taken) reached by the function is the 
number returned by the function. 
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d. Proof of termination of this algorithm is at  present  an 
open problem. 

e. Therefore,  a proof of total correctness cannot  be 
produced without a proof of termination. 

• STOF Formatter 

The Formatter organizes the formulas generated by both the MLS 
Flow Analyzer and the Proof of Correctness Analyzer. Output from 
this phase is one file containing all of the formulas generated. 
This file serves as input to the theorem prover (see Figure 
6-11). 

- Description 

During this phase, any necessary modifications or 
enhancements to the formulas can be made. Such enhancements 
could include audit information showing the origin of a 
formula by procedure name and statement. Also, any 
modifications that may be necessary to accommodate a specific 
theorem prover can be made at this time. Thus, the porting 
of STOF to different theorem prover environments is easily 
accomplished. 

- Specification 

The Formatter will take as input the formulas generated by 
both the MLS Flow Analyzer and the Proof of Correctness 
Analyzer. If desired, audit information will be appended to 
each formula. Modifications that may be needed to 
accommodate a specific theorem prover will be performed. 
These formulas will be organized into a formulas file to be 
submitted to the theorem prover for analysis. 

6.2.6  STOF Environment Support Tool 

The Environment Support Tool interacts with the Ada Security Analyzer, 
the Security Graph Generator, and the VCG. Its function is to automate a 
thorough and accurate configuration management of all databases in the 
STOF environment (see Figure 6-12). 

o Description 

The Environment Support Tool controls and maintains STOF data. 
Several databases will need to be maintained throughout the life 
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of the STOF verification process. This tool also manages the 
STOF user interface. Ease of use of the STOF approach by either 
designers or verifiers will be determined by the power of this 
tool. STOF may be used by programmers who require feedback, about 
security implications of their code, or it may be used by 
verification analysts or members of accreditation or 
certification teams. Version control and database consistency 
will also be addressed by this tool. 

Specification 

The STOF Environment Support Tool controls and maintains STOF 
data. This tool will be graphically oriented, and will use 
windows and color. The following tasks are proposed as part of 
the Phase II effort: 

- Design capability to perform configuration management on STOF 
files and data structures. 

- Design capability to maintain source code  verification 
history. 

Design capability for manipulating context of user view of 
the generated digraph. 

Identify externally referenced modules. 

- Track dependencies. 
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SECTION 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1  CONCLUSIONS 

A major advantage to the STOS translation method is the fact that the 
language SPECIAL is generated. SPECIAL files provide the user with an 
intermediate, readable form which can be analyzed and modified. Also, 
automated translation to SPECIAL facilitates timely use of HDM's MLS Tool 
and Boyer-Moore theorem prover. This accredited toolset provides an 
excellent means for representing information flow. Also, STOS could 
provide the user with less unknowns than STOF, while integrating with an 
existing, accredited methodology. 

One major disadvantage of STOS is that the Boyer-Moore theorem prover and 
the HDM methodology itself have limitations. HDM is primarily an 
information flow analysis tool, with a built-in MLS model. As such, HDM 
is limited in the type of verification applications it supports. For 
example, HDM could be used for proof of correctness, but the amount of 
work this task would require would not justify the results. Another 
disadvantage is that the entire STOS approach takes more CPU time than 
the STOF approach, because the generation of a specification language is 
bypassed with STOF. STOS will severely limit the type of verification 
that can be performed on the source. Its disadvantages can create 
significant time and effort costs. 

Results of COMPUSEC's Phase I research show that an STOF approach to 
verification of source code is more favorable than an STOS approach. 
STOF offers innovative technical progress in the field of software 
verification. It can be used *o translate a larger subset of the Ada 
language than that possible using STOS. It can generate formulas for 
both MLS information flow and proof of correctness. It can be tailored 
to specific security models and theorem provers. Finally, STOF can be 
implemented to perform quickly with a minimum of user intervention. The 
Phase II effort will therefore focus on implementing an STOF system. 

The following conclusions have resulted from Phase I analysis: 
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•  STOS 

The STOS approach can support translation of a subset of the 
Ada language. 

Although the STOS approach integrates with a proven, existing 
verification methodology, it can be limiting. Security 
analysis using the HDM methodology is restricted to 
information flow—proof of correctness cannot be handled. 

Questions have surfaced concerning HDM's placement on the 
NCSC's Endorsed Tools List (ETL). These questions will 
affect the recognition and acceptance of analysis 
accomplished using STOS. 

Using STOS and HDM requires large computer resources and even 
more significant time and human intervention in order to 
produce proofs. 

STOF 

- STOF can be used to translate a larger subset of the Ada 
language than that possible using STOS. 

- STOF can generate formulas for both multilevel secure (MLS) 
information flow and proof-of-correctness. 

- STOF formulas can potentially be tailored to the requirements 
of a specific security model. 

STOF output can be formatted to integrate with a particular 
theorem prover (i.e., Boyer-Moore, Shostak, or COMPUSEC). 

STOF can be implemented on a  small  hardware/software 
configuration (i.e., a single-user workstation). 

STOF can be implemented to perform quickly with a minimum of 
user intervention. 

- STOF could be submitted to the NCSC for inclusion on the ETL. 

STOF represents genuine technical improvements for  the 
application of verification techniques to real systems. 
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7.2 RECOMMENDATIONS 

Results of COMPUSEC's Phase I research show that an STOF approach to 
verification of source code is more favorable than an STOS approach. 
STOF offers innovative technical progress in the field of software 
verification. It can be used to translate a larger subset of the Ada 
language than that possible using STOS. It can generate formulas for 
both MLS information flow and proof of correctness. It can be tailored 
to specific security models and theorem provers. Finally, STOF can be 
implemented to perform quickly with a minimum of user intervention. The 
Phase II effort will therefore focus on implementing an STOF system. 
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APPENDIX A 

CANDIDATE LANGUAGE EVALUATIONS 

A-l 



A.l UNWEIGHTED CRITERIA VALUE EXPLANATIONS 

Unweighted Criteria Evaluations 
(1 of 4)                        | 

NAME              | VAL | CRITERIA                      | 

STANDARDIZATION    | 1 

MIL-STD,           | 
ANSI, ISO, 
Other 

1 

2 

3 

-Implementation is popular, but 
no clear standard. 
-Published standard, but may not 
be rigorous 

-Extremely rigorous standard. 

CODE STRUCTURE     | 1 

Process/Task Use 1 
2 

3 

-Very difficult to use 
-Generic, non-complex 
mechanisms for creation 
-Process/task creation is 
supported, intertask Ctrl 
is defined by language 

Flow Control 1 

2 

3 

-Control is difficult AND 
mechanisms are difficult 
to translate 

-Control is difficult OR 
mechanisms are difficult 
to translate 

-Extensive ctrl. structures 
and easy to translate 

Stmt. Eval. Order 1 
2 
3 

-Very ambiguous 
-Some ambiguity 
-Deterministic, no ambiguity 

Recursion 1 

2 
3 

-Natural part of language, so 
is hard to analyze security 

-Recursion is possible 
-Recursion not possible, making 
security analysis easier 

Backtracking 1 

2 
3 

|-Natural part of language, 
therefore hard to perform 
static analysis 

|-Parts of language use this 
j-Not normally used, easier 

to perform static analysis 
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Unweighted Criteria Evaluations 
1                       (2 of 4)                         | 

| NAME              | 

| AMBIGUITY 

i 
 <

 
n 
 >

 
i 

i 
 t

- CRITERIA                      | 

Scoping 1 

2 

3 

-No scoping mechanisms, 
difficult to resolve names 
-Sometime difficult to 
resolve names 

-Name can always be resolved 

| Type Coercion 1 
2 

3 

-Minimal type checking 
-Usually INT<=>REAL coercions 
but some ambiguity in info 
flow 

-Rules are unambiguous, OR 
coercion not allowed 

Parameter Passing 1 

2 

3 

-Total absence, OR lack of 
clear mechanisms 

-Some difficulty or ambi- 
guity in mechanisms 
-Clearly defined mechanisms, 
often used 

| VISIBILITY 

Hierarchies 1 
2 
3 

-Flat, or 1 level 
-2 levels 
-More than 2 levels 

Data Hiding 1 
2 
3 

-Not allowed in language 
-Implicitly defined 
-Explicitly definable 

| Data Flow 1 

2 
3 

-Many constructs obscure data 
flow 

-Some obscurity 
-Source and destination of 
data are always known 
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Unweighted Criteria Evaluations 
(3 of 4) 

NAME VAL CRITERIA 

DATA REPRESENTATION 

Abstract Data Types -Some types exist, but 
can't create new types 
-Hard to define/create 
-Rich set of techniques 
for creating and defining 

Data Separation 1 

2 

3 

-Self-modifying code 
is possible 
-Separation of code and 
data is optional 
-Distinct separation of 
code and data 
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Unweighted Criteria Evaluations 
1                      (A of 4)                        | 

| NAME              | 

| INTERFACES 

VAL CRITEPIA                      | 

Operating System 0 

1 
2 

3 

-Language is self-standing, 
doesn't allow OS service 
access 

-Very limited access to OS 
-Limited access through 
some predefined functions 

-Easy access to extensive 
OS services 

| Application Module 1 

2 

3 

-Multiple modules not 
allowed, or interface is 
highly ambiguous 
-Difficult to determine inter- 
faces between modules 

-Explicit definition of all 
interfaces to all components 

| I/O 0 

1 

2 
3 

-Not defined as part of 
language 

-Limited constructs AND diffi- 
cult to perform static analysis 

-Limited constructs 
-Rich construct set with 
direction-specific info 

User 1 

2 
3 

-Many discreet program deve- 
lopment steps, hard to read 
code 
-Language supports readable code 
-Comprehensive environment, 
tools available to support 
ease of program construction 
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A.2 UNWEIGHTED LANGUAGE EVALUATIONS 

Ada 

| CRITERIA          | EVALUATION                | VALUE   | 

| STANDARDIZATION    |                    Total:  | 3     1 

| MIL-STD 
1 
| ANSI 

| ISO 

| Other 

-MIL-STD-1815               | 3 

| CODE STRUCTURE     |                  Total: 13     | 

Process/Task Use 

Flow Control 

Stmt. Eval. Order 

Recursion 

Backtracking 

-Excellent task management 
Handles creation and mani- 
pulation of process/tasks, 
Static analysis can be used 
on mechanisms provided 

-Rich set of control 
structures. Static analysis 
can be used on them 

-Highly deterministic, 
even ambiguities are de- 
fined 

-Supported, but language 
doesn't depend on it 

-Used to bind context depen- 
dent identifiers 

3 

3 

3 

2 

2 

| AMBIGUITY Total: 9     1 

Scoping 

Type Coercion 

Parameter Passing 

-Strict rules provide 
excellent info for static 
analysis, "private" con- 
struct can reduce ambi- 
guity "generic"construct 
can cause it. Some context 
dependent var.  function, 
and procedure instances 

-Supported, with well 
defined results 

-All modes explicitly 
defined. Defined ambigu- 
ities in array and re- 
cord passing. 

3 

3 

3 
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Ada 

| CRITERIA EVALUATION VALUE   | 

| VISIBILITY Total:  j 9     I 

Hierarchies 

Data Hiding 

Data Flow 

-One of the most structured 
hierarchies for program 
creation 

-Rich set of constructs 
(e.g.'package') 

-Discernible through static 
analysis. Easily represented 
between modules 

3 

3 

3 

| DATA REPRESENTATION Total: 5     | 

| Abstract Data Types 

Data Separation 

-Supported 

-Can be used correct- 
ly or incorrectly 

3 

2 

| INTERFACES Total: 10     | 

Operating System 

j Application Module 

| I/O 

User 

-Well defined and flexible 

-Explicitly well defined 

-Std libraries available 

-Readability allows 
manual or machine analysis 

3 

3 

2 

2 
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BASIC 1 
| CRITERIA EVALUATION                | VALUE    | 

| STANDARDIZATION Total:  | 1      1 

| MIL-STD 

| ANSI 

| ISO 

| Other -Microsoft BASIC, many 
other implementations 

1 

| CODE STRUCTURE Total: 10     | 

Process/Task Use -No facility for handling 1     | 

Flow Control -Primitive branching 1 

Sttnt Eval. Order 

Recursion 

-Often line by line 
interpretive, but imp- 
lementation dependent 

-Not supported 

2 

3 

Backtracking -Not part of language 3 

| AMBIGUITY Total: 6     1 

Scoping -Not there 3 

Type Coercion j-Not supported 2 

Parameter Passing |-One-line functions only 1 

| VISIBILITY |                   Total: 3     1 

Hierarchies 

Data Hiding 

|-Not supported ''flat 
structure) 

|-Not supported 

1 

1 

Data Flow l-Insufficient structures to 
delineate dependencies 

1 
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|                         BASIC 

| CRITERIA           | EVALUATION 

| DATA REPRESENTATION |                    Total: 

VALUE   | 

2     I 

Abstract Data Types j-Not supported                1 

Data Separation    |-Language allows modifi-        1 
cation of running code 

| INTERFACES        |                  Total:  |  8     | 

Operating System   j-Limited 

| Application Module  |-Overlay mechanism is 
| highly ambiguous 

I/O              j-Limited 

User             j-Provides total envi- 
ronment 

2 

1 

2 

3 
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| CRITERIA           | 

C 1 

EVALUATION                 | VALUE    | 

| STANDARDIZATION    |                   Total:  |         | 

| MIL-STD 

| ANSI 

ISO 

Other 

-In progress 

-Kernighan & Ritchie, 
many extensions of this 

1 

2 

| CODE STRUCTURE     |                   Total:  |  12     | 

Process/Task Use 

Flow Control 

Stmt Eval. Order 

Recursion 

Backtracking 

-Fork() and semaphores 

-Clear except for conditional 
exp.  eval (some data flow 
only visible at runtime) 

-Sequential, clearly 
specified 

-Supported, but not typical- 
ly used 

-Not part of language 

2     | 

2 

3 

2 

3 

| AMBIGUITY         |                   Total: 7     | 

Scoping           |-Strong scoping rules, but 
same name can be used for 
different instances 

Type Coercion      |-Implicit type coercion 
| without warning or error, 
but strong type check is 
possible 

Parameter Passing  j-Call by value is only 
| mech. provided 

2     1 

2 

3 

| VISIBILITY        |                  Total: 1  1             1 

Hierarchies 

Data Hiding 

Data Flow 

-All subprograms at second 
lexical level 

-Separate compilation, 
static storage class 

-Suitable for static analysis 

2 

2 

2 
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C 

| CRITERIA          | EVALUATION                | VALUE   | 

| DATA REPRESENTATION |                   Total:  |   4     | 

Abstract Data Types j-Limited:  supports derived      2 
| and renamed data types 

Data Separation    j-Can be used or abused          2 

| INTERFACES         |                   Total:  |   8     | 

Operating System 

| Application Module 

| I/O 

User 

-Exceptionally good (fork 
and exec) 

-Not required, linker 
addr. resolution obscure 

-Std. libraries available, 
but no built-in facility 

-Many steps in dev. pro- 
cess. 'Several (many!) pass' 
compilers 

3 

1 

2 

2 
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| CRITERIA          ! 

FORTH 

EVALUATION                | VALUE   | 

| STANDARDIZATION Total:  |   1     | 

1 
MIL-STD 

| ANSI 
1 
ISO 

| Other 
1 

-FORTH Interest Group 
some std. functions 

1 

| CODE STRUCTURE Total:  |  11     | 

Process/Task. Use 

Flow Control 

Stmt Eval.  Order 

Recursion 

Backtracking 

-Stackframe maintenance 
or Concurrent FORTHs 
-Clearly defined, except 
'LEAVE' construct allows 
jump to end of loop 
structures 

-Strictly reverse polish, 
but can change or effect 
code in mid-operation 

-Not part of language 

-Not part of language 

2     I 

1 

2 

3 

3 

| AMBIGUITY Total: 5     | 

Scoping 

Type Coercion 

Parameter Passing 

-All vars and subprograms 
are global. Difficult to 
resolve name or symbol 

-Not there 

-None, except global 
| stack(s) 

1 

3 

1 
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FORTH 

| CRITERIA          | EVALUATION                | VALUE   | 

| VISIBILITY         |                   Total:  |   5     | 

Hierarchies        |-Unrestricted nesting 

Data Hiding        |-All components always 
accessible 

Data Flow         |-Non-deterministic for 
static analysis 

3 

1 

1 

| DATA REPRESENTATION |                    Total:  |   3      | 

j Abstract Data Types 

Data Separation 

-Extremely difficult to 
implement/simulate 

-Can be used well or 
abused 

1 

2 

| INTERFACES         |                   Total:  |   4     | 

Operating System 

| Application Module 

| I/O 

User 

-Is small kernel, not 
used from OS 
-One program at a time, 
interfaces through stack 
only 
-Limited and diffi- 
cult to analyze 

-Interpretive code 
can be made readable 

0 

1 

1 

2 
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FORTRAN 

| CRITERIA           | EVALUATION                 | VALUE   | 

2     I | STANDARDIZATION     | Total:  | 

MIL-STD 

| ANSI 

ISO 

Other 

-FORTRAN 77 

-VATFOR, VATFIV, FORTRANIV, 
et al 

1 

1 

| CODE STRUCTURE Total:  |  11     | 

Process/Task. Use 

Flow Control 

Stmt Eval. Order 

Recursion 

Backtracking 

-Very difficult using 
only FORTRAN constructs 

-Some richness in 
control structures 

-Line by line, some 
ambiguities 

-Not part of language 

-Not part of language 

1     | 

2 

2 

3 

3 

| AMBIGUITY Total: 6     I 

Scoping 

Type Coercion 

Parameter Passing 

-Global vars. (COMMON block) 
Explicit local var. decla- 
ration or implicit local 
declaration using default 
type. Difficult to tran- 
slate, complex static 
analysis 
-Explicit type change: 
Int.<=>Real, Left side 
of assgnmnt dominates mode 

-Strictly by reference- 
copy in copy out 

2 

2 

2 
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FORTRAN 

| CRITERIA          | EVALUATION                | VALUE   | 

| VISIBILITY         | Total:  | 7     | 

Hierarchies 
Data Hiding 

Data Flow 

-Program can be 2-level tree 
-Implicit in some parts of 
language 

-No indirect flows in assign- 
ment stmts, COMMON block va- 
riable value relates to 
param. pass mech., and or- 
der of alias assgnmnt in 
subprogram. Mechanized 
translation candidate 

2 
2 

3 

| DATA REPRESENTATION Total: 3     1 

Abstract Data Types 

Data Separation 

-Creation not supported, 
only existing types 
-Normally separated 

1 

2 

| INTERFACES Total: 5     | 

Operating System 

Application Module 

I/O 

User 

-Very few std. interfaces 

-Some checks occur only at 
run-time. Difficulties 
for static analysis 

-Limited. Difficulties 
for static analysis 

-Many dev. steps.  Flat 
code not very readable 

1 

2 

1 

1 
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LISP 

| CRITERIA           | EVALUATION                 | VALUE    | 

| STANDARDIZATION    |                   Total:  |   1     | 

| MIL-STD 

| ANSI 

ISO 

| Other -Common LISP, Interlisp, 
MACLISP,Franzlisp, contain 
some common features 

1 

| CODE STRUCTURE     |                   Total:  |   9     | 

Process/Task Use 

Flow Control 

Stmt Eval.  Order 

Recursion 

Backtracking 

-Not a natural part of 
the language. 

-Function evaluatr'.on, loops, 
branching, iterated state- 
ments (i.e.  for loops) are 
supported in some LISPs. 

-Normal evaluation is through 
list processing. Expres- 
sions are in unambiguous 
prefix notation. 

-Directly supported 

-Certain operations im- 
plement backtracking, in 
particular pattern mat- 
ching procedures. 

1     | 

2 

3 

1 

2 

| AMBIGUITY Total: 6     | 

| Scoping 

Type Coercion 

Parameter Passing 

-Variables are visible in 
the scope in which they 
are defined, and within any 
functions descendent from 
the scope in which they 
are defined. 

j-No type checking, 
coercion is normally only 

| used in arithmetic ex- 
pressions. 

j-Call by value, always 
| hands a value in 

2     1 

1 

3 
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1 
| CRITERIA          | 

| VISIBILITY         | 

Lisp 

EVALUATION                 | VALUE    | 

Total:  |  10     | 

Hierarchies 

Data Hiding 

Data Flow 

-Unrestricted nesting of        3 
function calls. 

-Some explicit functions        3 
are provided to implement 
it. 

-Can be readily determined       2 
except for cases per- 
forming assignments through 
indirection (i.e.  (SET A B) 
sets the variable pointed 
to by A to the value poin- 
ted to by B). 

| DATA REPRESENTATION Total:  |   4     \ 

| Abstract Data Types 

Data Separation 

-Support for records,arrays 3 
and hash tables is typical 
-Self-modifying code is 1 
natural part of language 

| INTERFACES Total:  |   9     | 

Operating System 

Application Module 

I/O 

User 

-Implementation dependent,       1 
normally little inter- 
action happens with the 
OS other than file mani- 
pulation. 

-No checks except at           2 
run-time 

-Extensive 10 and text mani-     3 
pulation functions are 
provided. 

-Debugging and editing          3 
functions are part of the 
language. 
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| CRITERIA          | 

| STANDARDIZATION     | 

MODULA-2 

EVALUATION                 | 

Total:  | 

VALUE   | 

3     1 

| MIL-STD 

| ANSI 

| ISO 

| Other -Nicklaus Wirth 3 

| CODE STRUCTURE     |                   Total:  |  12     | 

Process/Task Use 

Flow Control 

Stmt Eval.  Order 

Recursion 

Backtracking 

-Loosely coupled processes 
Ideal for data flow analy- 
sis 

-All the mechs.  supported 
by PASCAL, plus a few more 
Use of ptrs can obscure flow 

-Sequential, not 
rigorously defined 

-Supported 

-Not part of language 

3 

2 

2 

2 

3 

| AMBIGUITY         |                   Total:  |   9     | 

Scoping 

Type Coercion 

Parameter Passing 

-Well defined, suitable for 
static analysis 

-Coercion is definable 

-Veil defined, call by ref, 
call by value 

3 

3 

3 

| VISIBILITY         |                   Total:  |   9     | 

Hierarchies 

Data Hiding 

Data Flow 

-Unrestricted; foundation 
of language 

|-Explicitly supported 

|-Excellent mechs.  for 
data flow analysis 

1  3     | 

3 

3 
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MODULA-2 

| CRITERIA EVALUATION VALUE    | 

| DATA REPRESENTATION Total: 5     | 

| Abstract Data Types 

Data Separation 

-Rich constructs 

-Can be used or abused 

3 

2 

| INTERFACES Total: 8     ! 

Operating System 

Application Module 

I/O 

User 

-No well defined method of 
access to OS; can be used 
to create self-standing sys 

-All interfaces are explicit 
and suited for static analy- 
sis 

-Uses standard utility 
modules 
-Highly interactive, supports 
checking, yields readable 
code 

0 

3 

3 

2 
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PASCAL 

| CRITERIA          | EVALUATION                 | VALUE   | 

| STANDARDIZATION Total:  | 2     I 

MIL-STD 

| ANSI 

| ISO 

Other 

-Standard exists 

-Standard exists 

1 

1 

| CODE STRUCTURE Total: 11     1 

Process/Task. Use 

Flow Control 

Stmt Eval.  Order 

| Recursion 

Backtracking 

-Only available in exten- 
ded versions 

-Well defined, but ptrs. 
can obscure flow 

-Sequential, not well 
defined, but most imple- 
mentations follow stan- 
dard parsing 
-Supported 

-Not part of language 

2     I 

2 

2 

2 

3 

| AMBIGUITY Total: 8     1 

Scoping 

Type Coercion 

Parameter Passing 

-Well defined, suitable 
for data flow analysis 

-Some support 

-Well defined, call by ref, 
call by value 

3 

2 

3 
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PASCAL 

| CRITERIA           | EVALUATION                 | VALUE    | 

| VISIBILITY         |                   Total:  |   8     | 

Hierarchies 

Data Hiding 

Data Flow 

-More than 2 levels of 
subprograms possible 

-Supported in simple and 
derived types, also by 
using scoping 
-Suitable for static analysis 

3 

2 

3 

| DATA REPRESENTATION |                    Total:  |   5      | 

Abstract Data Types 

Data Separation 

-Supported 

-Can be used or abused 

3 

2 

| INTERFACES         |                   Total:  |   8     | 

Operating System 

j Application Module 

| I/O 

User 

-No exception handling 
facility specified 

-Modular compilation not 
supported in std., but most 
implementations support it 

-Not part of original 
specification 

-Supports a lot of checks, 
yields readable code 

2 

2 

2 

2 
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PL/M 1 
| CRITERIA           | EVALUATION                 | VALUE    | 

| STANDARDIZATION    |                   Total:  |   3     | 

MIL-STD 

| ANSI 

ISO 

Other -Intel language 3 

| CODE STRUCTURE     |                   Total:  |   13    | 

Process/Task Use 

Flow Control 

Stmt.  Eval. Order 

Recursion 

Backtracking 

-Process/task management is 
supported to some extent 
-PASCAL+C combination, rich 
constructs, easy to tran- 
slate 

-Somewhat ambiguous 

-Supported, but can be 
turned off 

-Not part of language 

2     I 

3 

2 

3 

3 

| AMBIGUITY Total: 7     | 

Scoping 

Type Coercion 

Parameter Passing 

-Well defined rules will 
aid data flow analysis 

-Pointer types cause 
ambiguity 

-Call by value, mech. 
well-defined 

3 

1 

3 

| VISIBILITY Total: 8     1 

Hierarchies 

Data Hiding 

Data Flow 

-More than 2 levels of 
subprograms possible 

-Supported at the subpro- 
gram level, like PASCAL 
-Suitable for static 

| analysis 

3 

2 

3 
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PL/M 

| CRITERIA           | EVALUATION                 | VALUE    | 

| DATA REPRESENTATION |                   Total:  |   3     | 

j Abstract Data Types 

Data Separation 

-Limited.  C-like              2 

-Doesn't support data/code      1 
separation 

| INTERFACES         |                   Total:  |   9     | 

Operating System 

| Application Module 

| I/O 

User 

-Can call predefined OS 
routines, or install user 
defined exception handlers 
-Well defined, deter- 
ministic 

-Not language relevant 

-Customizable for 
individual applications, 
yields readable code 

3 

3 

0 

3 
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1 PROLOG 1 
| CRITERIA 

| STANDARDIZATION 

| EVALUATION 

1 Total: 

II       i 
ii       i 
II       i 

w
  

II       i 
5
  

II       i 
_3    11 

i-t    1 
<

   II          1 
>

    II II           1 

MIL-STD 

ANSI 

ISO 

Other -Clocksin and Mellish, 
but non-standard predicates 
abound, many different 
environments 

| CODE STRUCTURE 

Process/Task. Use 

Flow Control 

Stmt. Eval. Order 

Total:  | 10 

3 

Recursion 

Backtracking 

-Program is a conjunction 
of goals satisfiable 
through use of processes 
-Fact causes immediate 
satisfaction of goal, 
reduces task to subgoals 
-Attempts left to right 
3 attribs: position, 
precedence class, and asso- 
ciativity.  Brackets or 
associativity disambiguate 
expressions 
-Recursive goal instantia- 
tions automatically 
evaluated 
-Initiated when goal cannot 
be satisfied 

AMBIGUITY 

Scoping 

Type Coercion 

Parameter Passing 

Total: 6 

2 

1 

3 

-Non-deterministic, can make 
translation difficult, 
variable value accessible 
only within single clause 
-Type checking not usual, 
Arith. assgnmnt must be num- 
bers for rule to succeed 
-Well-defined mechanism 
used to pass values between 
program parts 
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|                            PROLOG 

| CRITERIA          | EVALUATION                | 

| VISIBILITY         |                   Total:  | 

1 
VALUE    | 

5     | 

Hierarchies       j-All definition at 1 level      1 

Data Hiding       |-Implicit in parts of          2 
language 

Data Flow         j-Several clauses may            2 
j affect same data 

| DATA REPRESENTATION |                    Total:  |   3      | 

j Abstract Data Types j-Limited                     2 

Data Separation    j-Code and data are              1 
I same 

| INTERFACES         |                   Total:  |   5     | 

Operating System   j-Self-standing, doesn't 
interface with OS 

Application Module  |-Doesn't deal with program 
modules, rather with 
sets of data 

I/O              j-Limited 

User             j-Provides comprehensive 
user environment 

0 

1 

1 

3 
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SNOBOL 1 

| CRITERIA          | EVALUATION                 | VALUE    | 

| STANDARDIZATION Total:  | 1      1 

MIL-STD 

| ANSI 

ISO 

| Other -Many different imple- 
mentations 

1 

| CODE STRUCTURE Total: 8     1 

Process/Task. Use 

Flow Control 

Stmt. Eval. Order 

Recursion 

Backtracking 

-No mechanisms 

-Branching depends on success 
or failure of pattern mat- 
ching, structured code 
not possible 

-Line by line, conditional- 
ly on success of rule 
Left to right within order 
of precedence, except ex- 
ponentiation (right to left) 

-Not possible 

-Not explicit, but used for 
pattern matching of strings. 
Some Ctrl possible using 
'FAIL','FENCE',and'ABORT' 

1 

1 

2 

3 

1 

| AMBIGUITY Total: 8     1 

Scoping 

Type Coercion 

Parameter Passing 

-Name can refer to other 
names 

-Not applicable 

-Strictly call by value 

2 

3 

3 

A-26 



SNOBOL 

| CRITERIA          | 

| VISIBILITY 

EVALUATION                | 

Total:  | 

VALUE   | 

6     I 

Hierarchies 

Data Hiding 

Data Flow 

-2 levels of functions 
exist 

-Implicit 

-Indirection is often 
used; hard to follow 

2 

2 

2 

| DATA REPRESENTATION Total: 3     I 

| Abstract Data Types 

Data Separation 

-Non-existent 

-Can be used or abused 

1 

2 

| INTERFACES Total: 4     I 

Operating System 

j Application Module 

I/O 

User 

-Limited, difficult to 
implement 

-Can be defined, but not 
usually part of lang. 
-Limited to RW of strings 

-Many steps in dev. process 

1 

1 

1 

1 
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A.3 WEIGHTED LANGUAGE EVALUATIONS 

II                                                                               II       1 
II   U

                                           II     1 
II                                     II   1 
+ 

+
   1 

II                                       II   1 
II   W

   <
   W

  H
  U

                    II     1 
II                                     II   1 

II                                       II 
II 

<
 a

 <
                    II 

II                                 II 

II                                                           II 
II                                                           II 
II                                                           II 
II                                                           II 
II                                                           II 
II                                                           II     1 
II                                                           II 
II                                                           H 
II                                                           II 
II                                                           II 
II   <

                                                  H 
II   M

                                                  II 
II   O

S                                                  II 
II   W

                                                  II 
II   H

                                           II 
II  M

                                           II 
II   0

4
                                              II 

II   U
                                           II 

II                                                  II 

F | F | 
0 | 0 j 
R  R 
T  T 
H j R 

j A 
1 N 

•===+===H 

L | 
I 
s 
P 

• = = = H 

M | P | P | P | S | 
0 j A j L | R | N 
D j S | M | 0 j 0 | 
U | C j   | L | B j 
L j A j   | 0 j 0 j 
A j L j   | G 1 L j 

•===+===+===+===+===+ 

| STANDARDIZATION   ||   |   | 
(10)              j15 | 1  2 1  3 1 3 | A  3 | 1  1 

| MIL-STD         || 3 | 0 | 0 
|  x5             ||15 | 0 | 0 

| ANSI            || 0 | 0 | 0 
| x2            | | 0 | 0 | 0 

0 | 0 
0 | 0 

0 | 1 
0 | 2 

0 
0 

0 
0 O

 O
 

1  
  o

 o
 

N
 H

   
1  

  O
 O

 

O
 O

 
1  

  o
 o

 

O
 O

 
1  

  o
 o

 

o
 O
 

1  
 o

 o
 

| ISO            | | 0 | 0 | 0 
j  x2            j| 0 | 0 | 0 

0 | 0 
0 | 0 

0 
0 

0 | 1 | 0 | 0 | 0 | 
0 | 2 | 0 | 0 | 0 | 

| Other           || 0 | 1 | 2 
|  xl            || 0 | 1 | 2 

1 1 1 
1 1 1 

1 
1 

3 | 0 | 3 | 1 | 1 | 
3 | 0 | 3 | 1 | 1 | 

| CODE STRUCTURE    ||   |   | 
(20)             |57 28 |43 A8 133 30 51 |A1 |A8 |A9 |26 

| Process/Task Use  || 3 | 1 | 2 
|  xlO            ||30 |10 120 
 ++  

| Flow Control     || 3 | 1 | 2 
x5            j 115 | 5 110 
 ++  

| Stmt. Eval. Order || 3 | 2 | 3 
|  x2            || 6 | A | 6 
 ++  

| Recursion           2 ' 3 | 2 
j  x2             || A j 6 | A 

2 | 1 
20 110 

1 1 2 
5 110 

| 2 | 2 
A | A 

| 3 | 3 
6 | 6 

1 
10 

1 2 
110 

1 3 
1 6 

| 1 
1 2 

3 | 2 | 2 | 3 | 1 | 
30 |20 |20 130 |10 | 

1 2 | 2 | 3 | 2 | 1 | 
110 110 J15 110 | 5 | 

1 2 | 2 | 2 | 3 | 2 | 
| A | A | A j 6 | A 

| 2 | 2 | 3 | 1 | 3 | 
| A | A | 6 j 2 | 6 

Backtracking        2  3  3 
|  xl            | | 2 || 3 | 3 

| 3 | 3 
| 3 | 3 

1 2 
2 

| 3 | 3 | 3 | 1 | 1 | 
| 3 I 3 j 3 U 1  1 | 

-++- 
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II 
 

+
 

 

II 
<

 
II   II 

1—1                                1 
II     II  O

S                                           1 
II     II  W

                                           1 
II    II 

H
                                        I 

H
U

M
                                              1 

II     II   PS 
II   O

 

+    + 
 

A | 
D 
A 

B I 
A 
s 
I 
c 

c 1 F|F|L|M|P|P| 
0|0|I|0|A|L| 
RR|S|DS|M 
T j T j P | U j C j 
H j R j     L | A | 

j A j   j A j L j 
j N j 

P | S | 
R j N 
0 | 0 | 
L j B j 
0  0 
G | L 

| AMBIGUITY 
(20)            ||60 

| Scoping         | | 3 
x6             || 18 

46 

3 
18 

50 

2 
12 

28 |40 |46 |60 |56 |52 

1 | 2 | 2 | 3 | 3 | 3 
6  12 j12 j18 18  18 

46 154 

2 | 2 | 
12 |12 | 

Type Coercion    || 3 
|  x4             || 12 

2 
8 

2 
8 

3 | 2 | 1 | 3 | 2 | 1 
12 j 8 | 4 |12 | 8 | 4 

1 | 3 | 
4 112 | 

Parameter Passing || 3 
j  xlO           j |30 

1 
10 

3 
30 

1 | 2 | 3 | 3 | 3 | 3 
10 j 20 130 |30 ]30 130 

3 | 3 | 
30 | 30 

| VISIBILITY 
(15)            ||45 15 36 25 136 139 |45 |41 |41 25 |30 | 

Hierarchies        3 
|  x5            ||15 
 ++  

| Data Hiding      | | 3 
j  x4            jl 12 
 ++  

| Data Flow       | | 3 
x6            ||18 

1 
5 

1 
4 

1 
6 

2 
10 

2 
8 

3 
18 

3 | 2 | 3 | 3 | 3 | 3 
15 j10 |15 |15 |15 |15 

1 | 2 | 3 | 3 | 2 | 2 
4 | 8 |12 j12 | 8 | 8 

1 | 3 | 2 | 3 | 3 | 3 
6 118 112 j18 j 18 118 

1 1 2 | 
5 110 | 

2 | 2 | 
8 | 8 | 

| 2 | 2 | 
12 | 12 

| DATA REPRESENTA-  | 
TION (15) 

| Abstract Data 
Types 

1  xlO            | 

40 

3 
30 

115 

| 1 
110 

30 

1 2 
20 

35 |20 |35 |40 j40 |25 

|3|1|3|3|3|2 
| 30 10 |30 130 130 j20 

|25 )20 | 

1 2 | 1 | 
|20 |10 | 

Data Separation 
x5 

2 
110 

| 1 
5 

1 2 
110 

|1|2|1|2|2|1 
j 5 j 10 || 5 110 j 10 j 5 

1 1 1 2 | 
| 5 |10 J 
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II 

B   |   C   |   F 
A   j        |   0 
S            j   R 
I            |   T 
C  j        |   H 

F|L|M|P|P|P|S| 
OjI|0|A|L|R|N 
RJSJDJSJMJOJO 
T|P|U|C|         |   L   j   B   | 
R            |   L   |   A                0       0 
A   j        j   A   |   L   j        j   G   |   L   j 
N   j 

|   INTERFACES                  | | 
(20)                                |   53 3A   |37   117 30   |A2   |43   |A0 A5   |19   |20   | 

Operating  System           3 
|     x5                                  ||15 

2   |   3   |   0 
10   |15   j   0 

1   |   1   |   0   |   2 
5   |   5   |   0   |10 

3   |   0   |   1   | 
15   |   0   |   5   | 

|   Application                     3 
Module                        |2A 

|     x8                                || 

1   |   1   |   1 
8   |   8   |   8 

2   |   2   |   3   |   2 
16   116   124   116 

3   |   1   |   1   | 
2A   j   8   |   8 

|   I/O                                | |   2 
1     x5                                ||10 

2   |   2   |   1 
10   |10   |   5 

1   |   3   |   3   |   2 
5   |15   |15   )10 

0   |   1   |   1   | 
0   |   5   |   5   | 

|   User                              ||   2 
x2                                | j   A 

3   |   2   |   2 
6      A      A 

|   2   |   3   |   2   |   2 
A   |   6   j   A   |   A 

|   3   |   3   |   1   | 
6   |   6      2 
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A.4  SUMMARY LANGUAGE EVALUATION 

| CRITERIA         ||A|M|P|P|C|L 
j D | 0 j A j L |   | I 
| A | D | S | M |   ! S 

1 D | C 1      | P 
| L | A j 
j A | L | 

| TOTALS          ||270|242|222|214|198|193 

| STANDARDIZATION   ||   |   |   |   |   | 
(10)             |15 1 3 | 4 [ 3 1 2  1 

P | F | F | S | B | 
R | 0 | 0 j N | A 
0 | R j R j 0 | S | 
L j T j T | B | I 
0 | R j H j 0 | C 
G j A j   | L j 

1 N | 

165|163|154|151|139| 

1 3 | 1  1  1 

| CODE STRUCTURE   ||   |   |   |   |   | 
(20)            j57 j51 |41 148 |43 | 30 

| AMBIGUITY        ||   |   |   |   |   | 
(20)            j60 |60 56 [52 |50 |46 

| VISIBILITY           1   1   1   1   1 
(15)            ||45 |45 |41 |41 |36 |39 

49 |33 |48 |26 |28 

46 |40 |28 |54 |46 

25 |36 |25 |30 |15 

| DATA REPRESENTA-  ||   |   |   |   |   | 
TION (15)        j40 |40 j40 j 25 30 35 25 |20 |35 |20 |15 

| INTERFACES            1   1   1   1   1 
(20)            | 53 |43 |40 |45 37 |42 |19 |30 |17 |20 134 

=++= 
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APPENDIX B 
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B.l ADA SOURCE CODE 

— Function to compute the greatest common divisor of a,b. 

function gcd(a,b : natural) return natural is 
— pre(true) 
— post(r(gcd) = gcd(a,b)) 

u : integer := a; 
v : integer := b; 
v : integer; 

begin 
while (v > 0) loop 
— {(gcd(a,b) = gcd(u,v))} 
w : = u mod v; 
u := v; 
v := w; 

end loop; 

return u; 
end gcd; 

B.2 GRAPH OF GCD GENERATED BY STOF 

(See Figure B-l) 

B.3  PROOF OF CORRECTNESS OF GCD 

There are two parts to the proof of correctness: proof of partial 
correctness, and proof of termination. The formulas for the proof of 
correctness are taken directly from the conditions and assumptions 
appearing on the representative graph of the function. These formulas, 
when proven, show that the preconditions of gcd plus the processing in 
gcd imply the postconditions of gcd. 

I)  FORMULAS 

The following formulas must be proven true in order to show the 
partial correctness of gcd: 

A) The first formula generated establishes that if the entry 
conditions for the procedure along with information deduced from 
the type and variable declarations are correct, then the 
preconditions for processing are met. 
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Precond i 11 on={t rue J 
O 

Postcondition=(r(gcd)=gcd(a,&)j 

* (u=aJv=b,a>0Jb>0J 
-KD • 
gcdl.1 

[acd(a,b)=gcd(u,v)J    [v>0) 

 *0 K3 
gcd.2.1 

r(gcd)=u   )- 

(acd(a,b)=gcd(u,v)J (~v>0j 

gcd.2.5 

gcd.2.3.1 acd.2.3.2 gcd.2.3.j 

Figure B-l.  STOF Graph of GCD 
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{true and (u = a) and (v = b) and (a > 0) and (b > 0)) => 
{gcd(a,b) = gcd(u,v)} 

The lhs of the formula is generated from the precondition for the 
function gdc, and from the variable and type decalarations node 
(gcd.1.1). The rhs of the formula is from the preconditions for 
the first statement in the procedure (gcd.2.1 and gcd.2.2). 

B) The second formula establishes that if the preconditions for the 
loop statement are met, and the loop condition is true, then the 
processing of the loop will maintain the loop invariant. 

{(gcd(a,b) = gcd(u.v)) and (v > 0)} 
[(w = u mod v)(u = v)(v = w)] => {(gcd(a,b) = gcd(u,v)} 

The lhs of the formula is generated from the preconditions for 
the loop (gcd.2.1) and the loop ocndition (gcd.2.2). The rhs is 
generated from the postcondition for the loop (gcd.2.4) which is 
also referred to as the loop invariant. 

C) The third formula establishes that when the loop is terminated 
the loop invariant is true (which shows that the processing 
within the loop is correct) and the postconditions for the loop 
statement are true. 

{(gcd(a,b) = gcd(u,v)) and ~(v > 0)} => 
{(gcd(a,b) = gcd(u.v)) and (v = 0)} 

The lhs is generated from the loop invariant (gdc.2.1) and  the 
negation of  the loop condition (gcd.2.2). The rhs is from the 
loop invariant (gcd.2.4) and the termination condition for  the 
loop (gcd.2.5). 

D) The fourth formula establishes that if the precondtions for the 
return statement are met, and the expression in the return 
statement is evaluated then the postconditions for the procedure 
gcd will be met. 

{(gcd(a,b) = gcd(u,v)) and (v = 0)}[r(gcd) = u] => 
{r(gcd) = gcd(a,b)} 

The lhs is generated from the postconditions for theloop 
statement (gcd.2.A and gcd.2.5) and the processing in the return 
statement (gcd.3.1). The rhs is generated from the postcondition 
for the procedure gcd. 
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II)  PROOFS 

A) The type information about the parameters a and b was used to 
deduce the following: 

a > 0, b > 0 

The variable declarations added the following: 

u = a, v = b 

Substitution of a for u, and b for v shows 

gcd(a,b) = gcd(u,v) 

B) In order to prove the loop invariant, (gcd(a,b) = gcd(u,v)), it 
must be demonstrated that it remains valid after each cycle of 
the loop. 

The series of steps through the loop produce the 
following transformations to the variables u,v,w: 

i) w = u mod v, 
u = v, 
v = w => v = u mod v 

By substitution, the formula becomes: 

(gcd(a,b) = gcd(u,v)) and (v > 0)} => 
{gcd(a,b) = gcd(v,u mod v)) 

The following facts about gcd are true: 

a) gcd(x,0) = gcd(0,x) = x 

b) gcd(m,n) = gcd(n,m) = gcd(n,m - n) 

By induction, 

ii)  (m - q*n >= 0) => (gcd(n,m) = gcd(n,m - q*n)) 

The function mod is defined as follows: 

If m,n > 0 then (by rules of algebra) 

iii) m = n*q + rem, where 0 <= rem < n, and 
m mod n = rem. 

Given values for q, rem which satisfy iii, 

u mod v = rem, and rem >= 0, 
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which satisfies the second part of the loop invariant. 

Using the substitutions in i, and the results 
in ii and iii, 

gcd(v,u mod v) = gcd(v,rem) 
= gcd(v,v - q*u) 
= gcd(v,u) 
= gcd(u,v) 
= gcd(a.b). 

C) In order to show: 

{(gcd(a,b) = gcd(u,v)) and ~<v > 0)} => 
{(gcd(a,b) = gcd(u,v)) and (v = 0)} 

It suffices to show 

~(v > 0) => (v = 0) 

Since after each cycle of the loop, 

v = u mod v, 

By iii, (v >= 0), and since, ~(v > 0) => (v <= 0), 

(v >= 0) and (v <= 0) => (v = 0). 

D) At the termination of the loop, the variable v = 0, and the 
return value of the function is u. The post condition {r(gcd) = 
gcd(a,b)), can be proved from the following substitutions of 
values: 

gcd(a,b) = gcd(u,v) 
= gcd(u,0) 
= u 
= r(gcd). 

Thus the return value of the function is the greatest common 
divisor of u and v, which proves the postcondition for the 
function gcd.  Therefore the function gcd is partially correct. 

Ill) In order to demonstrate the termination of gcd, it suffices to show 
the termination of the loop. The loop will terminate if (v <= 0). 
Notice that after each cycle, 

v' = u mod v, 
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which by iii implies 

v' < v 

where V is the value of v after one cycle of the loop. Since b is 
finite and initially v = b, it will take at most b steps before v = 
0.  Therefore the function will terminate. 

IV)  Since gcd  is partially correct,  and  terminates,  it  is  totally 
correct. 
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GLOSSARY 

ATOS 

BTOS 

COS/NFE 

ETL 
E-HDM 

FDM 
FTLS 

HDM 

ITP 

JSS 

KVM 

lhs 

MLS 

NCSC 

OS 

PDL 

rhs 

STPE 
STOS 
STOF 

TCB 

VCG 

Ada-to-SPECIAL 

Bubble-to-SPECIAL 

Computer Operating System/Network. Front-End 

Endorsed Tools List 
Enhanced HDM 

Formal Development Methodology 
Formal Top-Level Specification 

Hierarchical Development Methodology 

Interactive Theorem Prover 

Job Stream Separator 

Kernalized IBM VM 

Left-hand side 

Multi-level Secure 

National Computer Security Center 

Operating System 

Program Design Language 

Right-hand side 

Secure Transacting Processing Experiment 
Source-to-SPECIAL 
Source-to-Formula 

Trusted Computing Base 

Verification Condition Generator 
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